Structural transformation of oxide scale of 700-MPa grade hot rolled high strength steel
-
摘要: 選取700 L作為試驗用典型鋼種,利用高溫同步熱分析儀(TGA)研究了熱軋過程中不同卷取溫度和冷卻速率條件對氧化鐵皮結構轉變的影響規律。實驗結果表明,450~500 ℃為700 L共析轉變的“鼻溫”區間,此時共析轉變的孕育期最短,容易發生共析轉變,生成大量的共析組織(Fe+Fe3O4)。相較于其他成分鋼種的氧化鐵皮共析組織轉變規律,700 L中添加的Mn、Nb、Ti元素會使晶粒細化,進而使參與反應的離子的擴散通道增加,并最終使共析轉變速率發生一定的延遲,共析“C”曲線整體出現向左偏移。Abstract: Due to exposure to air during rolling processes, a layer of oxide scale always coats the surface of the hot-rolled steel plates. During the subsequent cooling processes, the FeO in the oxide scale undergoes a eutectic reaction. The formation of a lamellar structure (Fe+Fe3O4) during this reaction is influenced by different cooling methods. The addition of alloying elements, however, also affects the eutectic reaction. The final oxide scale, hence, varieswith different compositions. For 700-MPa grade high strength steels, poor control of iron oxide scale is detrimental to the surface quality; such surface defects as iron oxide scale shedding, surface red rust, pit, are incurred. These defects, however, affect the overall performance of the steel. Consequently, the improvement of the surface quality of hot-rolled steel by controlling the iron oxide scale, without compromising the mechanical properties, has attracted the interest of many researchers. In this paper, the effect of cooling temperature and cooling rate on the structural transformation of tertiary oxide scale during hot-rolling was studied. A sample of 700 L steel grade was used. The study was carried out by the thermogravimetric analysis (TGA). The results show a "nose temperature" range of 450?500 ℃ for the 700 L eutectoid transformation. The FeO shows the shortest incubation period of eutectoid transformation, hence, is prone to eutectoid transformation, forminga large number of eutectoid phase (Fe+Fe3O4). Addition of alloying elements such as manganese (Mg), niobium (Nb), and titanium (Ti) to the 700 L steel lead to grain refinement in the steel. It also increases the amount of diffusion channel of ions that participate in the eutectoid phase transformation. Consequently, the eutectoid transformation is delayed, and the eutectoid " C” curve shifts to the left. This is comparableto the eutectoid transformation rule of oxide scale on the surface of other steel grades.
-
Key words:
- high strength steel /
- oxide scale /
- structural transformation /
- eutectoid "C" curve /
- Mn element
-
表 1 實驗鋼種的化學成分(質量分數)
Table 1. Chemical composition of the tested steel
% C Si Mn P Nb Ti Cr Al Fe 0.08 0.13 1.61 0.01 0.06 0.10 0.04 0.03 余量 表 2 對比鋼種的化學成分(質量分數)
Table 2. Chemical composition of comparative steel
% 試樣 C Si Mn P S Nb Ti SPHC 0.07 0.05 0.30 0.02 0.02 — — 700 L 0.08 0.13 1.61 0.01 — 0.06 0.10 www.77susu.com -
參考文獻
[1] Cai N, Ju X H, Xing Y, et al. Study on Timicro-alloyed 700 MPa high strength automobile-beam steel. Steel Roll, 2013, 30(5): 5 doi: 10.3969/j.issn.1003-9996.2013.05.002蔡寧, 鞠新華, 邢陽, 等. Ti微合金化700 MPa級汽車大梁鋼的研究. 軋鋼, 2013, 30(5):5 doi: 10.3969/j.issn.1003-9996.2013.05.002 [2] Tian W Y, Liu F, Wei C H, et al. Mechanical behavior of DP980 high strength steel under dynamic tensile tests. J Mater Eng, 2017, 45(3): 47 doi: 10.11868/j.issn.1001-4381.2015.000731田文揚, 劉奮, 韋春華, 等. DP980高強鋼動態拉伸力學行為. 材料工程, 2017, 45(3):47 doi: 10.11868/j.issn.1001-4381.2015.000731 [3] Xing S Q, Lu H C, Ma Y L, et al. Microstructure evolution of CG-HAZ reheated by second thermal cycle for 800 MPa grade high strength steel. J Mater Eng, 2015, 43(7): 93 doi: 10.11868/j.issn.1001-4381.2015.07.016邢淑清, 陸恒昌, 麻永林, 等. 800 MPa級高強鋼焊接粗晶區再熱循環的組織轉變規律. 材料工程, 2015, 43(7):93 doi: 10.11868/j.issn.1001-4381.2015.07.016 [4] Zhang S Q, Feng D, Zhang Y, et al. Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel. J Mater Eng, 2016, 44(5): 15 doi: 10.11868/j.issn.1001-4381.2016.05.003張施琦, 馮定, 張躍, 等. 新型超高強度熱沖壓用鋼的熱變形行為及本構關系. 材料工程, 2016, 44(5):15 doi: 10.11868/j.issn.1001-4381.2016.05.003 [5] Tian Y Q, Zhang H J, Chen L S, et al. Comprehensive effect of C, Mn partitioning behavior on retained austenite of low carbon Si?Mn steel in I&Q&P process. J Mater Eng, 2016, 44(4): 32 doi: 10.11868/j.issn.1001-4381.2016.04.006田亞強, 張宏軍, 陳連生, 等. 低碳硅錳鋼I&Q&P處理中C, Mn元素配分綜合作用. 材料工程, 2016, 44(4):32 doi: 10.11868/j.issn.1001-4381.2016.04.006 [6] Yu W, Wang J, Liu T. Evolution and application of oxidation and surface quality control of hot rolled steel products. Steel Roll, 2017, 34(3): 1余偉, 王俊, 劉濤. 熱軋鋼材氧化及表面質量控制技術的發展及應用. 軋鋼, 2017, 34(3):1 [7] Gleeson B, Hadavi S M M, Young D J. Isothermal transformation behavior of thermally-grown wüstite. Mater High Temp, 2000, 17(2): 311 doi: 10.3184/096034000783640776 [8] Tanei H, Kondo Y. Effects of initial scale structure on transformation behavior of wüstite. ISIJ Int, 2012, 52(1): 105 doi: 10.2355/isijinternational.52.105 [9] Otsuka N, Doi T, Hidaka Y, et al. In-situ measurements of isothermal wüstite transformation of thermally grown FeO scale formed on 0.048 mass% Fe by synchrotron radiation in air. ISIJ Int, 2013, 53(2): 286 doi: 10.2355/isijinternational.53.286 [10] Chen R Y, Yeun W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. OxidMet, 2003, 59(5-6): 433 [11] Paidassi J. Sur la precipitation d'oxyde Fe3O4dans les pelliculesd'oxydation du fer aux temperatures elevees. Acta Metall, 1955, 3(5): 447 doi: 10.1016/0001-6160(55)90133-4 [12] Hayashi S, Mizumoto K, Yoneda S, et al. The mechanism of phase transformation in thermally-grown FeO scale formed on pure-Fe in air. Oxid Met, 2014, 81(3-4): 357 doi: 10.1007/s11085-013-9442-7 [13] He Y Q, Liu H Y, Sun B, et al. Structure development of oxide scale on low carbon steel strip under continue cooling conditions. Trans Mater Heat Treat, 2015, 36(1): 178何永全, 劉紅艷, 孫彬, 等. 低碳鋼表面氧化鐵皮在連續冷卻過程中的組織轉變. 材料熱處理學報, 2015, 36(1):178 [14] Cao G M, He Y Q, Liu X J, et al. Tertiary oxide scale structure transition of low carbon steel during continuous cooling after coiling process. J Cent South Univ Sci Technol, 2014, 45(6): 1790曹光明, 何永全, 劉小江, 等. 熱軋低碳鋼卷取后冷卻過程中三次氧化鐵皮結構轉變行為. 中南大學學報: 自然科學版, 2014, 45(6):1790 [15] Yoneda S, Hayashi S, Kondo Y, et al. Effect of Mn on isothermal transformation of thermally grown FeO scale formed on Fe-Mn alloys. Oxid Met, 2017, 87(1-2): 125 doi: 10.1007/s11085-016-9661-9 [16] Yang Z H, Chen B C. Discussion of the role in microalloying elements Nb, V and Ti in steel. Gansu Metall, 2000(4): 20楊作宏, 陳伯春. 談微合金元素Nb、V、Ti在鋼中的作用. 甘肅冶金, 2000(4):20 -