<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

π型向心徑向流吸附器氣?固兩相模型傳熱傳質特性

王浩宇 劉應書 張傳釗 陳福祥 馬曉鈞 李春旺

王浩宇, 劉應書, 張傳釗, 陳福祥, 馬曉鈞, 李春旺. π型向心徑向流吸附器氣?固兩相模型傳熱傳質特性[J]. 工程科學學報, 2019, 41(11): 1473-1483. doi: 10.13374/j.issn2095-9389.2019.03.26.001
引用本文: 王浩宇, 劉應書, 張傳釗, 陳福祥, 馬曉鈞, 李春旺. π型向心徑向流吸附器氣?固兩相模型傳熱傳質特性[J]. 工程科學學報, 2019, 41(11): 1473-1483. doi: 10.13374/j.issn2095-9389.2019.03.26.001
WANG Hao-yu, LIU Ying-shu, ZHANG Chuan-zhao, CHEN Fu-xiang, MA Xiao-jun, LI Chun-wang. Heat and mass transfer characteristics of the gas?solid two-phase model in a π-shaped centripetal radial flow adsorber[J]. Chinese Journal of Engineering, 2019, 41(11): 1473-1483. doi: 10.13374/j.issn2095-9389.2019.03.26.001
Citation: WANG Hao-yu, LIU Ying-shu, ZHANG Chuan-zhao, CHEN Fu-xiang, MA Xiao-jun, LI Chun-wang. Heat and mass transfer characteristics of the gas?solid two-phase model in a π-shaped centripetal radial flow adsorber[J]. Chinese Journal of Engineering, 2019, 41(11): 1473-1483. doi: 10.13374/j.issn2095-9389.2019.03.26.001

π型向心徑向流吸附器氣?固兩相模型傳熱傳質特性

doi: 10.13374/j.issn2095-9389.2019.03.26.001
基金項目: 北京市自然科學基金資助項目(8182019);北京市教育委員會科技計劃一般資助項目(KM201711417014);國家自然科學基金資助項目(51578065)
詳細信息
    通訊作者:

    E-mail:zhangchuanzhao@buu.edu.cn

  • 中圖分類號: TG142.71

Heat and mass transfer characteristics of the gas?solid two-phase model in a π-shaped centripetal radial flow adsorber

More Information
  • 摘要: 為了明確徑向流吸附器變壓吸附制氧的傳熱傳質規律并提高制氧效率,建立π型向心徑向流吸附器(CP-π RFA)的氣固耦合兩相吸附模型,通過計算流體力學方法對能量模型、吸附熱以及顆粒尺寸等因素進行了數值模擬。結果表明:單相模型在加壓過程和吸附過程中床層內最高溫度分別為309.19 K和311.63 K,氧氣摩爾分數最高值分別為55.66%和62.65%;同等條件下兩相模型在加壓過程和吸附過程中床層內最高溫度分別為302.27 K和305.29 K,氧氣摩爾分數最高值分別為57.51%和66.02%。未考慮吸附熱的加壓過程和吸附過程床層內最高溫度分別為293.5 K和293.9 K,氧氣摩爾分數最高值分別為59.25%和72.18%;同等條件下考慮吸附熱時在加壓過程和吸附過程中床層內最高溫度分別為302.3 K和305.3 K,氧氣摩爾分數最高值分別為57.51%和66.02%。隨著顆粒直徑的增加,出口產品氣的氧氣摩爾分數逐漸下降,同時產品氣流量與回收率逐漸增加,顆粒直徑1.6 mm為最佳吸附劑顆粒直徑。本實驗獲得了吸附器內部傳熱傳質規律,為CP-π RFA用于變壓吸附制氧提供重要的技術參考。

     

  • 圖  1  π型向心徑向流吸附器的結構示意圖. (a)流動型式;(b)三維模型;(c)網格劃分圖

    Figure  1.  Structure of CP-π RFA:(a)flow pattern;(b)3D model;(c)grid graph

    圖  2  網格無關性檢驗

    Figure  2.  Test of mesh independence

    圖  3  單組分N2和O2的吸附平衡曲線模擬結果與文獻對比

    Figure  3.  Comparison of the simulation results of adsorption equilibrium curves for single component N2 and O2 and literature reported

    圖  4  能量模型對π型向心徑向流吸附器在變壓吸附制氧過程中溫度云圖的影響. (a)兩相模型?加壓過程;(b)單相模型?加壓過程;(c)兩相模型?吸附過程;(d)單相模型?吸附過程

    Figure  4.  Effect of energy model on temperature distribution of CP-π RFA in PSA oxygen production:(a)two phase?Pr;(b)single phase?Pr;(c)two phase?Ad;(d)single phase?Ad

    圖  5  能量模型對π型向心徑向流吸附器在變壓吸附制氧過程中溫度的影響曲線

    Figure  5.  Effect of energy model on temperature profiles of CP-π RFA in PSA oxygen production

    圖  6  能量模型對π型向心徑向流吸附器在變壓吸附制氧過程中O2摩爾分數云圖的影響. (a)兩相模型?加壓過程;(b)單相模型?加壓過程;(c)兩相模型?吸附過程;(d)單相模型?吸附過程

    Figure  6.  Effect of energy model on oxygen distribution of CP-π RFA in PSA oxygen production:(a)two phase?Pr;(b)single phase?Pr;(c)two phase?Ad;(d)single phase?Ad

    圖  7  能量模型對π型向心徑向流吸附器在變壓吸附制氧過程中氧氣摩爾分數的影響曲線

    Figure  7.  Effect of energy model on oxygen mole fraction profiles of CP-π RFA in PSA oxygen production

    圖  8  吸附熱對變壓吸附制氧過程中溫度云圖的影響. (a)兩相模型?考慮吸附熱的加壓過程;(b)單相模型?未考慮吸附熱的加壓過程;(c)兩相模型?考慮吸附熱的吸附過程;(d)單相模型?未考慮吸附熱的吸附過程

    Figure  8.  Effect of absorption on temperature distribution in PSA oxygen production:(a)two phase?adsorption heat-Pr;(b)single phase?no adsorption heat-Pr;(c)two phase?adsorption heat-Ad;(d)single phase?no adsorption heat-Ad

    圖  9  吸附熱對徑向流變壓吸附制氧過程中溫度曲線的影響

    Figure  9.  Effect of adsorption heat on temperature profiles in PSA oxygen production

    圖  10  吸附熱對變壓吸附制氧過程中氧氣摩爾分數云圖的影響. (a)兩相模型?考慮吸附熱的加壓過程;(b)單相模型?未考慮吸附熱的加壓過程;(c)兩相模型?考慮吸附熱的吸附過程;(d)單相模型?未考慮吸附熱的吸附過程

    Figure  10.  Effect of absorption heat on oxygen distribution in PSA oxygen production:(a)two phase?adsorption heat-Pr;(b)single phase?no adsorption heat-Pr;(c)two phase?adsorption heat-Ad;(d)single phase?no adsorption heat-Ad

    圖  11  吸附熱對徑向流變壓吸附制氧過程中氧氣摩爾分數的影響曲線

    Figure  11.  Effect of adsorption heat on oxygen mole fraction profiles in PSA oxygen production

    圖  12  顆粒直徑對吸附性能影響云圖. (a)dp=0.4 mm;(b)dp=1.6 mm;(c)dp=2.8 mm;(d)dp=4.0 mm;(e)dp=5.2 mm

    Figure  12.  Effect of particle diameter on adsorption property:(a)dp=0.4 mm;(b)dp=1.6 mm;(c)dp=2.8 mm;(d)dp=4.0 mm;(e)dp=5.2 mm

    圖  13  吸附劑顆粒直徑對氧氣摩爾分數及出口產品氣流量的影響

    Figure  13.  Effect of particle diameter on oxygen mole fraction and product flow rate

    圖  14  顆粒直徑對床層內氧氣摩爾分數沿徑向變化影響曲線

    Figure  14.  Effect of particle diameter on oxygen mole fraction profiles at the axial center position

    圖  15  顆粒直徑對床層內氧氣回收率的影響

    Figure  15.  Effect of particle diameter on oxygen recovery

    表  1  π型向心徑向流吸附器的結構參數

    Table  1.   Structure parameters of CP-π RFA

    結構參數數值結構參數數值
    吸附器殼內徑/mm219外流道氣流分布孔直徑/mm8
    外分布筒內徑/mm211外流道氣流分布孔開孔率/%3.6
    吸附劑套筒內徑/mm153中心流道氣流分布孔直徑/mm4
    中心流道內徑/mm26中心流道氣流分布孔開孔率/%25.5
    氣流分布孔厚度/mm3吸附劑堆填高度/mm187
    下載: 導出CSV

    表  2  π型向心徑向流吸附器制氧循環過程的初始條件

    Table  2.   Initial conditions for the oxygen production of CP-π RFA

    參數數值
    氣體摩爾分數21%O2,79%N2
    壓力/Pa101325
    氣相溫度/K293
    固相溫度/K293
    氣相氧氣質量分數0.233
    單位質量吸附劑氧氣吸附量/(mol·kg?1)0.0262832
    單位質量吸附劑氮氣吸附量/(mol·kg?1)0.6328067
    下載: 導出CSV

    表  3  吸附劑顆粒具體參數

    Table  3.   Specific parameters of absorbent particles

    床層孔隙率顆粒密度${\rho _{\rm{p}}}$/(kg·m?3)直徑${d_{\rm{p}}}$/mm比熱容/(J·kg?1·K?1)
    0.410351.61100
    下載: 導出CSV

    表  4  組分氣體物性參數

    Table  4.   Physical parameters of component gas

    組分氣體摩爾質量/(g·mol?1)臨界溫度/K臨界壓力/Pa傳質系數/s?1
    O232154.45.04×10662
    N228126.13.39×10619.7
    下載: 導出CSV

    表  5  吸附等溫線參數

    Table  5.   Parameters of adsorption isotherm parameters

    吸附質k1/(mol·kg?1·Pa?1)k2/Kk3/Pa?1k4/KΔH/(kJ·mol?1)
    O27.87×10?91541.2116.79×10?101968.2412
    N29.86×10?92010.9081.67×10?9225018
    下載: 導出CSV

    表  6  Skarstrom循環順序

    Table  6.   Skarstrom cycle sequence

    循環順序循環過程示意圖時間/s
    升壓t1=7
    吸附t2=5
    降壓t3=3
    反吹t3=5
    下載: 導出CSV

    表  7  吸附器1的邊界條件

    Table  7.   Boundary condition for adsorber 1

    吸附器1邊界條件設置
    口A質量入口質量入口壓力出口壓力出口
    口B壓力出口質量入口
    床壁
    軸線軸對稱軸對稱軸對稱軸對稱
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Chiang A S T, Hong M C. Radial flow rapid pressure swing adsorption. Adsorption, 1995, 1(2): 153 doi: 10.1007/BF00705002
    [2] Huang W C, Chou C T. Comparison of radial-and axial-flow rapid pressure swing adsorption processes. Ind Eng Chem Res, 2003, 42(9): 1998 doi: 10.1021/ie020129c
    [3] Dai Z S, Yu M, Rui D Z, et al. Investigation on a vertical radial flow adsorber designed by a novel parallel connection method. Chin J Chem Eng, 2018, 26(3): 484 doi: 10.1016/j.cjche.2017.11.005
    [4] Tian Q Q, He G G, Wang Z P, et al. A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units. Ind Eng Chem Res, 2015, 54(30): 7502 doi: 10.1021/acs.iecr.5b00555
    [5] Ruthven D M, Farooq S, Knaebel K S. Pressure Swing Adsorption. New York: VCH Publishers, 1994
    [6] Smolarek J, Leavitt F W, Nowobilski J J, et al. Radial Bed Vaccum/Pressure Swing Adsorber Vessel: US Patent, 5759242.1998−6−2
    [7] Genkin V S, Dilman V V, Sergeev S P. Distribution of a gas stream over height of a catalyst bed in a radial contact apparatus. Int Chem Eng, 1973, 13(1): 24
    [8] Zheng D X, Xie Z J, Bai L J. Prediction of adsorption breakthrough curves of the radical flow adsorber. J Xi'an Petrol Inst, 1990, 5(4): 31

    鄭德馨, 謝志鏡, 白麗君. 徑向流吸附器吸附穿透曲線的計算. 西安石油學院學報, 1990, 5(4):31
    [9] Kareeri A A, Zughbi H D, Al-Ali H H. Simulation of flow distribution in radial flow reactors. Ind Eng Chem Res, 2006, 45(8): 2862 doi: 10.1021/ie050027x
    [10] Lu J L, Zhang X J, Qiu L M, et al. Theoretical analysis of uniform flow distribution in vertical radical adsorption bed. CIESC Journal, 2012, 63(Suppl 2): 21

    陸軍亮, 張學軍, 邱利民, 等. 立式徑向流吸附器中流體均布的理論分析. 化工學報, 2012, 63(增刊 2): 21
    [11] Zhang X J, Wang X L, Lu J L, et al. Numerical simulation of vertical radical flow adsorber used in air separation unit. J Eng Thermophys, 2013, 34(5): 822

    張學軍, 王曉蕾, 陸軍亮, 等. 空分用立式徑向流分子篩吸附器數值模擬. 工程熱物理學報, 2013, 34(5):822
    [12] Li R J, Zhu Z B. Investigations on hydrodynamics of multilayer π-type radial flow reactors. Asia-Pac J Chem Eng, 2012, 7(4): 517 doi: 10.1002/apj.601
    [13] Zhang X J, Lu J L, Qiu L M, et al. A mathematical model for designing optimal shape for the cone used in z-flow type radial flow adsorbers. Chin J Chem Eng, 2013, 21(5): 494 doi: 10.1016/S1004-9541(13)60527-3
    [14] Zhapbasbayev U K, Ramazanova G I, Kenzhaliev O B. Modelling of turbulent flow in a radial reactor with fixed bed. Thermophys Aeromech, 2015, 22(2): 229 doi: 10.1134/S0869864315020092
    [15] Wang H Y, Liu Y S, Meng Y. Effect of the gas distribution system structure of a radial flow adsorber on gas distribution. Chin J Eng, 2015, 37(1): 91

    王浩宇, 劉應書, 孟宇. 徑向流吸附器布氣系統結構對布氣效果的影響. 工程科學學報, 2015, 37(1):91
    [16] Wang H Y, Liu Y S, Shi S S, et al. Influence of the structure of radial flow adsorbers on oxygen production with pressure swing adsorption. Chin J Eng, 2015, 37(2): 238

    王浩宇, 劉應書, 施紹松, 等. 徑向流吸附器內部結構對變壓吸附制氧效果的影響. 工程科學學報, 2015, 37(2):238
    [17] Liu Y S, Zheng X G, Dai R F. Numerical study of flow maldistribution and depressurization strategies in a small-scale axial adsorber. Adsorption, 2014, 20(5-6): 757 doi: 10.1007/s10450-014-9619-7
    [18] Sun L M, Amar N B, Meunier F. Numerical study on coupled heat and mass transfers in an adsorber with external fluid heating. Heat Recovery Syst CHP, 1995, 15(1): 19 doi: 10.1016/0890-4332(95)90034-9
    [19] Zhu X Q, Liu Y S, Yang X, et al. Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption, 2017, 23(1): 175 doi: 10.1007/s10450-016-9843-4
    [20] Li Z Y, Liu Y S, Wang H H, et al. A numerical modelling study of SO2 adsorption on activated carbons with new rate equations. Chem Eng J, 2018, 353: 858 doi: 10.1016/j.cej.2018.07.119
    [21] Li G, Xiao P, Zhang J, et al. The role of water on postcombustion CO2 capture by vacuum swing adsorption: Bed layering and purge to feed ratio. AIChE J, 2014, 60(2): 673 doi: 10.1002/aic.14281
    [22] Yang X, Epiepang F E, Li J B, et al. Sr-LSX zeolite for air separation. Chem Eng J, 2019, 362: 482 doi: 10.1016/j.cej.2019.01.066
    [23] Epiepang F E, Yang X, Li J B, et al. Mixed‐cation LiCa‐LSX zeolite with minimum lithium for air separation. AIChE J, 2018, 64(2): 406 doi: 10.1002/aic.16032
    [24] Sorial G A, Granville W H, Daly W O. Adsorption equilibria for oxygen and nitrogen gas mixtures on 5a molecular sieves. Chem Eng Sci, 1983, 38(9): 1517 doi: 10.1016/0009-2509(83)80087-6
    [25] Fang L, Xiao J S, Benard P, et al. Thermal effects on pressure swing adsorption cycles for hydrogen purification. J Eng Thermophys, 2018, 39(5): 1104

    方靚, 肖金生, 皮埃爾·貝納德, 等. 氫氣純化變壓吸附循環的熱效應. 工程熱物理學報, 2018, 39(5):1104
    [26] Prakash M J, Prasad M, Srinivasan K. Modeling of thermal conductivity of charcoal–nitrogen adsorption beds. Carbon, 2000, 38(6): 907 doi: 10.1016/S0008-6223(99)00202-X
  • 加載中
圖(15) / 表(7)
計量
  • 文章訪問數:  1113
  • HTML全文瀏覽量:  752
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-03-26
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回