<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

熱軋過程中摩擦系數非對稱性對軋機振動及穩定性的影響

黃金磊 臧勇 郜志英

黃金磊, 臧勇, 郜志英. 熱軋過程中摩擦系數非對稱性對軋機振動及穩定性的影響[J]. 工程科學學報, 2019, 41(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.03.06.002
引用本文: 黃金磊, 臧勇, 郜志英. 熱軋過程中摩擦系數非對稱性對軋機振動及穩定性的影響[J]. 工程科學學報, 2019, 41(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.03.06.002
HUANG Jin-lei, ZANG Yong, GAO Zhi-ying. Influence of friction coefficient asymmetry on vibration and stability of rolling mills during hot rolling[J]. Chinese Journal of Engineering, 2019, 41(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.03.06.002
Citation: HUANG Jin-lei, ZANG Yong, GAO Zhi-ying. Influence of friction coefficient asymmetry on vibration and stability of rolling mills during hot rolling[J]. Chinese Journal of Engineering, 2019, 41(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.03.06.002

熱軋過程中摩擦系數非對稱性對軋機振動及穩定性的影響

doi: 10.13374/j.issn2095-9389.2019.03.06.002
基金項目: 國家自然科學基金資助項目(51775038)
詳細信息
    通訊作者:

    E-mail: gaozhiying@me.ustb.edu.cn

  • 中圖分類號: TG333.7+1

Influence of friction coefficient asymmetry on vibration and stability of rolling mills during hot rolling

More Information
  • 摘要: 建立了摩擦系數非對稱性的軋制過程模型,并與某熱軋機傳動系統的垂直?水平?扭轉結構模型相結合,建立了結構?過程相耦合的動力學模型。利用穩定性準則確定了摩擦系數非對稱作用下軋機系統的穩定域,分析了摩擦系數的非對稱性對軋機系統振動特性和穩定性的影響規律。通過仿真分析表明,摩擦系數的非對稱性對系統的穩定性有顯著的影響,隨著非對稱程度的不同,系統會出現穩定域、水平失穩域和水平扭轉失穩域,不同程度的非對稱性會造成不同的振動形態。通過對某熱軋廠現場測試,得到了軋機系統的振動信號,驗證了仿真分析的正確性,同時指出軋制集裝箱板和普板(Q235)時的變形抗力不同引起穩定域的差異,從而使得在摩擦系數的非對稱程度一樣時,軋制集裝箱板時落在了水平失穩域,系統出現了明顯的水平振動;軋制普板(Q235)時落在了穩定域,系統沒有明顯的振動。

     

  • 圖  1  工作輥垂直?水平?扭轉振動時軋件變形區示意圖

    Figure  1.  Schematic of deformation zone of vertical?horizontal?torsional vibration

    圖  2  軋機輥系簡化結構模型

    Figure  2.  Simplified structure model of rolling mill

    圖  3  上下表面不同摩擦系數下的穩定域

    Figure  3.  Stability domain at different friction coefficients between upper and lower surfaces

    圖  4  現場測試圖. (a)試驗臺架;(b)水平振動測試點位置

    Figure  4.  Picture of field test: (a) rolling mill for test; (b) horizontal vibration test point

    圖  5  F3軋制普板時上工作輥水平振動圖. (a)時域;(b)頻域

    Figure  5.  Graph of upper work roll horizontal vibration during rolling of a Q235 plate: (a) time domain; (b) frequency domain

    圖  6  F3軋制集裝箱板時上工作輥水平振動圖. (a)時域;(b)頻域

    Figure  6.  Graph of upper work roll horizontal vibration during rolling container plate: (a) time domain; (b) frequency domain

    圖  7  F3軋制板材時工作輥振動響應. (a)普板;(b)集裝箱板

    Figure  7.  Dynamic response of work roll during rolling plate: (a) Q235 plate; (b) container plate

    圖  8  板帶上下表面溫度

    Figure  8.  Strip temperature between upper and lower surface

    圖  9  軋制板材時上下表面不同摩擦系數下的穩定域. (a)集裝箱板;(b)普板

    Figure  9.  Stability domain at different friction coefficients of upper and lower surfaces during rolling plate: (a) container plate; (b) Q235 plate

    表  1  F3機架軋機結構參數

    Table  1.   Structural parameters of F3 rolling mill

    J1 /(kg·m2J2 /(kg·m2J3 /(kg·m2J4 /(kg·m2J5 /(kg·m2J6 /(kg·m2
    2.12×1045.31×1033.81×1021.3×1021.3×1021.70×103
    J7 /(kg·m2m1 /kgm2 /kgk1/(N·m?1·rad)k2/(N·m?1·rad)k3/(N·m?1·rad)
    1.73×1031.17×1041.17×1042×1091×1083.83×108
    k4/(N·m?1·rad)k5/(N·m?1·rad)k6/(N·m?1·rad)kh1 /(N?1·m)kh2 /(N?1·m)kv1 /(N?1·m)
    2×1081.1×1081.1×1087.3×1087.3×1081.6×1010
    kv2 /(N?1·m)R1 /mR2 /mr2 /mr3 /mr4 /m
    1.6×10100.3450.3450.1950.5440.245
    下載: 導出CSV

    表  2  F3機架軋制工藝參數

    Table  2.   Process parameters of F3 rolling mill

    入口厚度/m出口厚度/m入口張力/MPa出口張力/MPa變形抗力/MPa
    11.187×10?34.605×10?314.93914.939188.7
    下載: 導出CSV

    表  3  A、B、C、D點穩定性失穩形式

    Table  3.   Eigenvalue and instability type of point A, point B, point C, and point D

    數據點$\,{\mu _1}$$\,{\mu _2}$${\lambda _{1,2}}/{10^3}$${\lambda _{3,4}}/{10^3}$失穩形式
    A0.30.170.0001±0.2376i?0.002+0.0855i37.8 Hz水平失穩
    B0.170.17?0.0002±0.2418i?0.005+0.0755i穩定
    C0.090.170.0003± 0.2457i?0.002±0.0642i39.1 Hz水平失穩
    D0.060.170.0009± 0.2472i0.0012+0.0613i39.3 Hz水平失穩
    9.76 Hz扭轉失穩
    下載: 導出CSV

    表  4  E、B、F、G點穩定性失穩形式

    Table  4.   Eigenvalue and instability type of point E, point B, point F, and point G

    數據點$\,{\mu _1}$$\,{\mu _2}$${\lambda _{1,2}}/{10^3}$${\lambda _{3,4}}/{10^3}$失穩形式
    E0.270.070.0017±0.2456i?0.005+0.0932i39.1 Hz水平失穩
    B0.170.17?0.0002±0.2418i?0.005+0.0755i穩定
    F0.120.220.0004± 0.2428i?0.002±0.0605i38.6 Hz水平失穩
    G0.070.270.0019± 0.2457i0.0034+0.0572i39.1 Hz水平失穩
    9.10 Hz扭轉失穩
    下載: 導出CSV

    表  5  H點穩定性失穩形式

    Table  5.   Eigenvalue and instability type at point H

    ${\mu _1}$${\mu _2}$${\lambda _{1,2}}$${\lambda _{3,4}}$失穩形式
    0.140.200.0198±242.168i?3.244±69.42i38.54 Hz水平失穩
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yun I S, Wilson W R D, Ehmann K F. Review of chatter studies in cold rolling. Int J Mach Tools Manuf, 1998, 38(12): 1499 doi: 10.1016/S0890-6955(97)00133-8
    [2] Yun I S, Wilson W R D, Ehmann K F. Chatter in the strip rolling process, Part 1: dynamic model of rolling. J Manuf Sci Eng, 1998, 120(2): 330 doi: 10.1115/1.2830131
    [3] Yun I S, Wilson W R D, Ehmann K F. Chatter in the strip rolling process, Part 2: Dynamic rolling experiments. J Manuf Sci Eng, 1998, 120(2): 337 doi: 10.1115/1.2830132
    [4] Yun I S, Ehmann K F, Wilson W R D. Chatter in the strip rolling process, Part 3: Chatter model. J Manuf Sci Eng, 1998, 120(2): 343 doi: 10.1115/1.2830133
    [5] Hu P H, Ehmann K F. A dynamic model of the rolling process. Part I: Homogeneous model. Int J Mach Tools Manuf, 2000, 40(1): 1 doi: 10.1016/S0890-6955(99)00049-8
    [6] Hu P H, Ehmann K F. A dynamic model of the rolling process. Part II: Inhomogeneous model. Int J Mach Tools Manuf, 2000, 40(1): 21 doi: 10.1016/S0890-6955(99)00050-4
    [7] Song J S, Wang M X. The Influence of rolling temperature on coefficient of friction in the contact arc in hot rolling. Iron Steel, 1979, 14(4): 44

    宋冀生, 王曼星. 熱軋時軋制溫度對接觸弧內摩擦系數的影響. 鋼鐵, 1979, 14(4):44
    [8] Kim Y S, Zhang N, Ji J C, et al. The effect of rolling speed and friction on cold rolling mill stability//ASME 2012 International Mechanical Engineering Congress and Exposition. Houston, 2012: 291
    [9] Zeng L Q, Zang Y, Gao Z Y, et al. Stability analysis of the rolling mill multiple-modal-coupling vibration under nonlinear friction. J Vibroeng, 2015, 17(6): 2824
    [10] Hou D X, Peng R R, Liu H R. Vertical-horizontal coupling vibration characteristics of strip mill rolls under the variable friction. J Northeast Univ Nat Sci, 2013, 34(11): 1615

    侯東曉, 彭榮榮, 劉浩然. 變摩擦力下板帶軋機輥系垂直?水平耦合振動特性. 東北大學學報(自然科學版), 2013, 34(11):1615
    [11] Gao Z Y, Zang Y, Zeng L Q. Review of modelling and theoretical studies on chatter in the rolling mills. J Mech Eng, 2015, 51(16): 87

    郜志英, 臧勇, 曾令強. 軋機顫振建模及理論研究進展. 機械工程學報, 2015, 51(16):87
    [12] Zou J X, Xu L J. Vibration Control of Cold Tandem Mill System. Beijing: Metallurgical Industry Press, 1998

    鄒家祥, 徐樂江. 冷連軋機系統振動控制. 北京: 冶金工業出版社, 1998
    [13] Huang J L, Zang Y, Gao Z Y, et al. Influence of asymmetric structure parameters on rolling mill stability. J Vibroeng, 2017, 19(7): 4840 doi: 10.21595/jve.2017.18263
    [14] Hwang Y M, Tzou G Y. Analytical and experimental study on asymmetrical sheet rolling. Int J Mech Sci, 1997, 39(3): 289 doi: 10.1016/S0020-7403(96)00024-0
    [15] Gao H, Ramalingam S C, Barber G C, et al. Analysis of asymmetrical cold rolling with varying coefficients of friction. J Mater Process Technol, 2002, 124(1-2): 178 doi: 10.1016/S0924-0136(02)00131-0
    [16] Zhang S H, Zhao D W, Gao C R, et al. Analysis of asymmetrical sheet rolling by slab method. Int J Mech Sci, 2012, 65(1): 168 doi: 10.1016/j.ijmecsci.2012.09.015
    [17] Salimi M, Kadkhodaei M. Slab analysis of asymmetrical sheet rolling. J Mater Process Technol, 2004, 150(3): 215 doi: 10.1016/j.jmatprotec.2004.01.011
    [18] Li B, Zhang Q D, Zhang X F. Rolling parameters and strip tensile stress distribution of asymmetrical rolling process. J Harbin Inst Technol, 2014, 46(9): 68 doi: 10.11918/hitxb20140912

    李博, 張清東, 張曉峰. 非對稱軋制力能參數與帶鋼張應力分布規律. 哈爾濱工業大學學報, 2014, 46(9):68 doi: 10.11918/hitxb20140912
    [19] ?wia?toniowski A, Thomson P F. Theoretical study of the dynamic effect on the warping of rolled strip and loss of flatness. J Mater Process Technol, 1996, 61(4): 373
    [20] Jafari A A. Asymmetrical Rolling and Self-Excited Vibration in A Hot Roughing Mill [Dissertation]. Wollongong: University of Wollongong, 1994
    [21] Bai L L. Research on Multimode Coupled Vibration and Stability Considering the Rolling Mill Asymmetric Factors [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    白露露. 考慮非對稱因素的多模態軋機振動與軋制穩定性研究[學位論文]. 北京: 北京科技大學, 2017
  • 加載中
圖(9) / 表(5)
計量
  • 文章訪問數:  1149
  • HTML全文瀏覽量:  789
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-03-06
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回