-
摘要: 為探究干濕循環對水泥基復合充填材料長期穩定性的影響,以水灰比4∶1水泥基復合材料為研究對象,借助ETM力學試驗系統、X射線衍射及掃描電鏡掃描裝置,對不同干濕循環次數下“飽水”狀態和“失水”狀態的試件進行單軸抗壓強度試驗,并通過物相分析及微觀結構探討干濕循環對其影響機理。結果表明,隨著干濕循環次數的增加,“飽水”狀態下失水率逐漸增大,含水率和容重呈下降趨勢,峰值強度先增加后減小,增幅最高達9%;“失水”狀態下失水率、含水率和容重均變化不大,峰值強度較初始狀態有所降低,最高達13.5%;兩種狀態彈性模量和殘余強度都呈下降趨勢。通過機理分析發現,“干”過程中碳化反應是材料強度降低的主要原因,而“濕”過程中吸水將部分碳酸鈣等物質轉化為具有承載能力的鈣礬石(AFT)和碳硫硅鈣石(TSA)是材料強度恢復的主要原因,但恢復能力有限,長期的干濕循環會對水泥基復合充填材料穩定性產生不利影響。Abstract: In recent years, cement-based composite materials have been widely used in mine filling, which can well solve the hidden danger of goaf collapse. However, when the water table and surrounding rock moisture content change, the filling materials will be in the process of dry and wet alternation, which will affect the long-term stability of the filling materials and goaf. In order to explore the influence of dry and wet cycles on the long-term stability of cement-based composite filling materials, taking water-cement ratio 4∶1 cement-based composites as the research object and using ETM mechanical test system, X-ray diffraction (XRD) and scanning electron microscopy (SEM) device, uniaxial compressive strength tests were carried out in the state of "water saturation" and "water loss" under different dry-wet circulation. The influence mechanism of dry-wet circulation was discussed by phase analysis and microstructure. The results show that as the number of dry-wet circulation increases, the loss rate increases gradually while the water content and bulk density decrease, the peak intensity first increases and then decreases, and the increase is as high as 9% under the saturated state. The water loss rate, water content and bulk density do not change much under the condition of "water loss", while the peak strength decreases from the initial state to up to 13.5%. The elastic modulus and residual strength of the two states show a downward trend. Through mechanism analysis, it is found that carbonation reaction is the main reason for material strength reduction in the "dry" process, while the CaCO3 and other materials are converted into ettringite (AFT) and thaumasite (TSA) with some bearing capacity during the absorbing water process in "wet" process, which is the main reason for the strength recovery of materials. However, the recovery ability is limited, and the long-term dry-wet circulation will adversely affect the stability of cement-based composite filling material.
-
Key words:
- cement-based composites /
- dry-wet circulation /
- compressive strength /
- mechanism analysis /
- stability
-
表 1 水泥基復合材料成分及組成
Table 1. Composition of cement-based materials
組分 半定量(質量分數) A ${\rm{CaO}} \cdot 3{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3} \cdot {\rm{CaS}}{{\rm{O}}_4}(76\% )\;{\rm{2CaO}} \cdot {\rm{Si}}{{\rm{O}}_2}(24\% )$ A-A ${\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}(6\% )\;{\rm{Si}}{{\rm{O}}_2}(69\% )\;{\rm{BaBi}}{{\rm{O}}_3}(25\% )$ B ${\rm{CaS}}{{\rm{O}}_4}(61\% )\;{\rm{CaC}}{{\rm{O}}_3}(12\% )\;{\rm{CaS}}{{\rm{O}}_4} \cdot 2{{\rm{H}}_2}{\rm{O}}(27\% )$ B-B ${\rm{Si}}{{\rm{O}}_2}(70\% )\;{\rm{CaS}}{{\rm{O}}_4}(30\% )$ 表 2 不同干濕循環次數水泥基復合材料基本物理參數
Table 2. Basic physical parameters of cement-based materials under different dry-wet cycles
狀態 干濕循環
次數失水率/
%含水率/
%容重/
(kN·m?3)干容重/
(kN·m?3)“飽水” 0 0 71.8 11.5 3.2 1 3.4 70.9 10.9 3.2 3 2.5 71.1 11.1 3.2 6 2.8 71.3 11.1 3.2 9 4.5 70.2 10.4 3.2 12 9.8 69.2 10.4 3.2 “失水” 1 10.6 68.5 10.1 3.2 4 10.7 67.4 9.8 3.2 7 10.4 68.9 10.2 3.2 10 10.9 68.7 10.3 3.2 表 3 不同干濕循環次數下水泥基復合材料單軸壓縮試驗結果
Table 3. Uniaxial compression test results of cement matrix composites under different dry?wet cycles
狀態 干濕循環次數 干濕時間/d 平均峰值強度/MPa 劣化度/% 平均殘余強度/MPa 平均彈性模量/MPa 養護完成 0 0 0.88 0 0.65 170 “失水” 1 1 0.80 9.0 0.50 123 “飽水” 1 2 0.89 ?11.3 0.63 130 “飽水” 3 6 0.94 ?5.6 0.59 123 “失水” 4 7 0.87 7.4 0.33 136 “飽水” 6 12 0.95 ?9.2 0.41 118 “失水” 7 13 0.83 12.6 0.27 145 “飽水” 9 18 0.96 ?15.7 0.42 116 “失水” 10 19 0.83 13.5 0.24 151 “飽水” 12 24 0.85 ?2.4 0.57 101 表 4 干濕循環12次后不同狀態下水泥基復合材料主要礦物組成表
Table 4. Mineral composition of cement-based composites under different conditions after twelve dry?wet cycles
狀態 礦物名稱 化學式 “失水”狀態 碳酸鈣 ${\rm{CaC}}{{\rm{O}}_{\rm{3}}}$ “飽水”狀態 碳酸鈣 ${\rm{CaC}}{{\rm{O}}_{\rm{3}}}$ 碳硫硅鈣石 ${\rm{C}}{{\rm{a}}_{\rm{3}}}{\rm{Si}}{({\rm{OH}})_6}({\rm{C}}{{\rm{O}}_3})({\rm{S}}{{\rm{O}}_4}) \cdot 12{{\rm{H}}_{\rm{2}}}{\rm{O}}$ 鈣礬石 ${\rm{C}}{{\rm{a}}_{\rm{6}}}{\rm{A}}{{\rm{l}}_{\rm{2}}}{({\rm{S}}{{\rm{O}}_4})_3}{({\rm{OH}})_{12}} \cdot 2{\rm{6}}{{\rm{H}}_{\rm{2}}}{\rm{O}}$ 未風化層 鈣礬石 ${\rm{C}}{{\rm{a}}_{\rm{6}}}{\rm{A}}{{\rm{l}}_{\rm{2}}}{({\rm{S}}{{\rm{O}}_4})_3}{({\rm{OH}})_{12}} \cdot 26{{\rm{H}}_{\rm{2}}}{\rm{O}}$ 碳酸鈣 ${\rm{CaC}}{{\rm{O}}_{\rm{3}}}$ 碳硫硅鈣石 ${\rm{C}}{{\rm{a}}_{\rm{3}}}{\rm{Si}}{({\rm{OH}})_6}({\rm{C}}{{\rm{O}}_3})({\rm{S}}{{\rm{O}}_{\rm{4}}}) \cdot 12{{\rm{H}}_{\rm{2}}}{\rm{O}}$ 其他 — www.77susu.com 參考文獻
[1] Qian M G, Shi P W, Xu J L. Mine Pressure and Rock Formation Control. 2nd Ed. Xuzhou: China University of Mining and Technology Press, 2010錢鳴高, 石平五, 許家林. 礦山壓力與巖層控制. 2版. 徐州: 中國礦業大學出版社, 2010 [2] Hu B N. Backfill mining technology and development tendency in China coal mine. Coal Sci Technol, 2012, 40(11): 1胡炳南. 我國煤礦充填開采技術及其發展趨勢. 煤炭科學技術, 2012, 40(11):1 [3] Zhao C Z, Zhou H Q, Qu Q D, et al. Preliminary test on mechanical properties of paste filling material. J China Univ Min Technol, 2004, 33(2): 35趙才智, 周華強, 瞿群迪, 等. 膏體充填材料力學性能的初步實驗. 中國礦業大學學報, 2004, 33(2):35 [4] Zhang Y G, Dong F B. Research and practice of new mining technologies by backfilling with refuse under buildings in town. Coal Min Technol, 2008, 13(1): 31 doi: 10.3969/j.issn.1006-6225.2008.01.011張元功, 董鳳寶. 城鎮建筑群下矸石充填開采新技術的研究與實踐. 煤礦開采, 2008, 13(1):31 doi: 10.3969/j.issn.1006-6225.2008.01.011 [5] Wang Q. Experimental research on filling mining of new high-water material. Zhongzhou Coal, 2016(9): 65王強. 新型高水材料充填開采試驗研究. 中州煤炭, 2016(9):65 [6] Cui J K, Feng Y L, Sun C D, at el. Test of high-water material width and strength for roadway-side stowing and its application. Coal Min Technol, 2014, 19(5): 58崔景昆, 豐云雷, 孫春東, 等. 大采高高水材料巷旁充填體寬度與強度試驗研究與應用. 煤礦開采, 2014, 19(5):58 [7] Yan Z P, Qi T Y, Zhang L X, at el. Study of ZKD quick-setting materials with high water content and technique of pump packing. J China Coal Soc, 1997, 22(3): 270 doi: 10.3321/j.issn:0253-9993.1997.03.009顏志平, 漆泰岳, 張連信, 等. ZKD高水速凝材料及其泵送充填技術的研究. 煤炭學報, 1997, 22(3):270 doi: 10.3321/j.issn:0253-9993.1997.03.009 [8] Zhou H Q, Hou C J, Yi H W, at el. Research and application of the roadside backfilling technique with high water content materials in China and abroad. Ground Press Strata Control, 1991(4): 2周華強, 侯朝炯, 易宏偉, 等. 國內外高水巷旁充填技術的研究與應用. 礦山壓力與頂板管理, 1991(4):2 [9] Sun C D, Feng G M. Technology of retaining roadway along gob by stowing with high-water-content material. Coal Min Technol, 2010, 15(1): 58 doi: 10.3969/j.issn.1006-6225.2010.01.020孫春東, 馮光明. 新型高水材料巷旁充填沿空留巷技術. 煤礦開采, 2010, 15(1):58 doi: 10.3969/j.issn.1006-6225.2010.01.020 [10] Jia H G, Lai Y H, Wang W, at el. Roadway-side packing technology with new type high-water rapid hardening materials under the conditions of gob-side entry retaining and its application. China Coal, 2015, 41(1): 51 doi: 10.3969/j.issn.1006-530X.2015.01.012賈紅果, 來永輝, 王偉, 等. 沿空留巷條件下新型高水速凝材料巷旁充填技術及其應用. 中國煤炭, 2015, 41(1):51 doi: 10.3969/j.issn.1006-530X.2015.01.012 [11] Shi G Y. Gateway retained along goaf technology with pier pillar backfilled with high water material in high gassy mine. Coal Scie Technol, 2014, 42(7): 30史國躍. 高瓦斯礦井高水充填墩柱沿空留巷技術. 煤炭科學技術, 2014, 42(7):30 [12] Wang P, Zhang Y H. Performance improvement for high-water-content filling material beside gob-side entry retaining. Saf Coal Mines, 2016, 47(2): 51王鵬, 張耀輝. 沿空留巷巷旁高水充填材料性能改進. 煤礦安全, 2016, 47(2):51 [13] Feng G M. Field measurement and analysis of ground behavior of roadway retained by packing high water content material along goaf side. Ground Press Strata Control, 1998(4): 13馮光明. 高水材料巷旁充填礦壓觀測與研究. 礦山壓力與頂板管理, 1998(4):13 [14] Xie H, Liu C W, He T. Analysis on the law of roof and floor strata movement in coal mining with high-water material backfilling. Metal Mine, 2014(5): 5謝輝, 劉長武, 何濤. 高水材料充填開采工作面頂底板巖層活動規律分析. 金屬礦山, 2014(5):5 [15] Cai S J, Mao S L, Fang Z L. Weathering characteristics and mechanisms of rapid-hardening backfilling materials. J Univ Sci Technol Beijing, 1996, 18(5): 406蔡嗣經, 毛市龍, 方祖烈. 高水速凝充填材料的風化特征和風化機理. 北京科技大學學報, 1996, 18(5):406 [16] Song C Y, Cheng X L, Wang Z L. Weathering mechanism of ettringite. J Univ Sci Technol Beijing, 1999, 21(5): 459 doi: 10.3321/j.issn:1001-053X.1999.05.012宋存義, 程相利, 汪增樂. 鈣礬石材料硬化體風化機理. 北京科技大學學報, 1999, 21(5):459 doi: 10.3321/j.issn:1001-053X.1999.05.012 [17] Ma Q Y, Yu P Y, Yuan P. Experimental study on creep properties of deep siltstone under cyclic wetting and drying. Chin J Rock Mech Eng, 2018, 37(3): 593馬芹永, 郁培陽, 袁璞. 干濕循環對深部粉砂巖蠕變特性影響的試驗研究. 巖石力學與工程學報, 2018, 37(3):593 [18] Wang Z. Effects of dry-wet cycles on mechanical properties of fly ash high-moisture materials. Fly Ash Comprehens Utiliz, 2018(3): 40 doi: 10.3969/j.issn.1005-8249.2018.03.011王崢. 干濕循環對摻粉煤灰高水材料力學特性影響. 粉煤灰綜合利用, 2018(3):40 doi: 10.3969/j.issn.1005-8249.2018.03.011 [19] Xie H, Liu C W. Analysis on influence of moisture content on deformation characteristics of the high-water-content material stone. J Sichuan Univ Eng Sci Ed, 2013, 45(Suppl 1): 1謝輝, 劉長武. 含水率對高水材料結石體變形特性的影響分析. 四川大學學報:工程科學版, 2013, 45(增刊 1):1 [20] Liu D D. Study on Hydrating and Hardening Mechanisms of High-Water Rapid-Setting Material [Dissertation]. Xuzhou: China University of Mining and Technology, 2015劉丹丹. 高水速凝材料水化硬化機理研究[學位論文]. 徐州: 中國礦業大學, 2015 [21] Li S, Li Y. Microcosmic differences between carbosulfite and ettringite. Sichuan Build Mater, 2013, 39(5): 34 doi: 10.3969/j.issn.1672-4011.2013.05.018李碩, 李楊. 碳硫硅鈣石與鈣礬石的微觀區別. 四川建材, 2013, 39(5):34 doi: 10.3969/j.issn.1672-4011.2013.05.018 [22] Barnett S J, Halliwell M A, Crammond N J, et al. Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting. Cem Concr Compos, 2002, 24(3-4): 339 doi: 10.1016/S0958-9465(01)00085-3