<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

干濕循環作用對水泥基復合充填材料的影響

周賢良 劉長武 馮波 郭兵兵 盧永虎 張連衛

周賢良, 劉長武, 馮波, 郭兵兵, 盧永虎, 張連衛. 干濕循環作用對水泥基復合充填材料的影響[J]. 工程科學學報, 2019, 41(12): 1609-1617. doi: 10.13374/j.issn2095-9389.2019.03.05.001
引用本文: 周賢良, 劉長武, 馮波, 郭兵兵, 盧永虎, 張連衛. 干濕循環作用對水泥基復合充填材料的影響[J]. 工程科學學報, 2019, 41(12): 1609-1617. doi: 10.13374/j.issn2095-9389.2019.03.05.001
ZHOU Xian-liang, LIU Chang-wu, FENG Bo, GUO Bing-bing, LU Yong-hu, ZHANG Lian-wei. Effects of dry-wet circulation on cement-based composite filling materials[J]. Chinese Journal of Engineering, 2019, 41(12): 1609-1617. doi: 10.13374/j.issn2095-9389.2019.03.05.001
Citation: ZHOU Xian-liang, LIU Chang-wu, FENG Bo, GUO Bing-bing, LU Yong-hu, ZHANG Lian-wei. Effects of dry-wet circulation on cement-based composite filling materials[J]. Chinese Journal of Engineering, 2019, 41(12): 1609-1617. doi: 10.13374/j.issn2095-9389.2019.03.05.001

干濕循環作用對水泥基復合充填材料的影響

doi: 10.13374/j.issn2095-9389.2019.03.05.001
基金項目: 河南省科技攻關項目(192102310198)
詳細信息
    通訊作者:

    E-mail:liuchangwu@scu.edu.cn

  • 中圖分類號: TU599

Effects of dry-wet circulation on cement-based composite filling materials

More Information
  • 摘要: 為探究干濕循環對水泥基復合充填材料長期穩定性的影響,以水灰比4∶1水泥基復合材料為研究對象,借助ETM力學試驗系統、X射線衍射及掃描電鏡掃描裝置,對不同干濕循環次數下“飽水”狀態和“失水”狀態的試件進行單軸抗壓強度試驗,并通過物相分析及微觀結構探討干濕循環對其影響機理。結果表明,隨著干濕循環次數的增加,“飽水”狀態下失水率逐漸增大,含水率和容重呈下降趨勢,峰值強度先增加后減小,增幅最高達9%;“失水”狀態下失水率、含水率和容重均變化不大,峰值強度較初始狀態有所降低,最高達13.5%;兩種狀態彈性模量和殘余強度都呈下降趨勢。通過機理分析發現,“干”過程中碳化反應是材料強度降低的主要原因,而“濕”過程中吸水將部分碳酸鈣等物質轉化為具有承載能力的鈣礬石(AFT)和碳硫硅鈣石(TSA)是材料強度恢復的主要原因,但恢復能力有限,長期的干濕循環會對水泥基復合充填材料穩定性產生不利影響。

     

  • 圖  1  不同干濕循環次數“飽水”狀態下應力?應變曲線

    Figure  1.  Stress?strain curves under "saturated" state in different dry?wet cycles

    圖  2  不同干濕循環次數“失水”狀態下應力?應變曲線

    Figure  2.  Stress?strain curves under the condition of "water loss" in different dry?wet cycles

    圖  3  不同干濕循環次數試件峰值強度與殘余強度. (a)“飽水”狀態;(b)“失水”狀態

    Figure  3.  Peak intensity and residual strength of samples under different dry?wet cycles: (a) state of "water saturation";(b) state of "water loss"

    圖  4  不同干濕循環次數試件單軸壓縮破壞形態

    Figure  4.  Different modes of samples after the uniaxial compression strength under different dry-wet cycles

    圖  5  干濕循環12次不同狀態下水泥基復合材料X射線特征曲線. (a)風化層“失水”狀態;(b)風化層“飽水狀態”;(c)未風化層

    Figure  5.  XRD curves of cement-based composites under different conditions after twelve dry?wet cycles:(a)weathered layer under water-loss state;(b)weathered layer under saturated state;(c)unweathered layer

    圖  6  干濕循環12次后未風化層不同放大倍數微觀形貌圖

    Figure  6.  SEM images of unweathered layer under different magnification after twelve dry?wet cycles

    圖  7  干濕循環12次后風化層微觀形貌圖. (a)“失水”狀態;(b)“飽水”狀態

    Figure  7.  SEM images of microstructure after twelve dry-wet cycles:(a)water loss;(b)saturated state

    表  1  水泥基復合材料成分及組成

    Table  1.   Composition of cement-based materials

    組分半定量(質量分數)
    A${\rm{CaO}} \cdot 3{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3} \cdot {\rm{CaS}}{{\rm{O}}_4}(76\% )\;{\rm{2CaO}} \cdot {\rm{Si}}{{\rm{O}}_2}(24\% )$
    A-A${\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}(6\% )\;{\rm{Si}}{{\rm{O}}_2}(69\% )\;{\rm{BaBi}}{{\rm{O}}_3}(25\% )$
    B${\rm{CaS}}{{\rm{O}}_4}(61\% )\;{\rm{CaC}}{{\rm{O}}_3}(12\% )\;{\rm{CaS}}{{\rm{O}}_4} \cdot 2{{\rm{H}}_2}{\rm{O}}(27\% )$
    B-B${\rm{Si}}{{\rm{O}}_2}(70\% )\;{\rm{CaS}}{{\rm{O}}_4}(30\% )$
    下載: 導出CSV

    表  2  不同干濕循環次數水泥基復合材料基本物理參數

    Table  2.   Basic physical parameters of cement-based materials under different dry-wet cycles

    狀態干濕循環
    次數
    失水率/
    %
    含水率/
    %
    容重/
    (kN·m?3)
    干容重/
    (kN·m?3)
    “飽水”0071.811.53.2
    13.470.910.93.2
    32.571.111.13.2
    62.871.311.13.2
    94.570.210.43.2
    129.869.210.43.2
    “失水”110.668.510.13.2
    410.767.49.83.2
    710.468.910.23.2
    1010.968.710.33.2
    下載: 導出CSV

    表  3  不同干濕循環次數下水泥基復合材料單軸壓縮試驗結果

    Table  3.   Uniaxial compression test results of cement matrix composites under different dry?wet cycles

    狀態干濕循環次數干濕時間/d平均峰值強度/MPa劣化度/%平均殘余強度/MPa平均彈性模量/MPa
    養護完成000.8800.65170
    “失水”110.809.00.50123
    “飽水”120.89?11.30.63130
    “飽水”360.94?5.60.59123
    “失水”470.877.40.33136
    “飽水”6120.95?9.20.41118
    “失水”7130.8312.60.27145
    “飽水”9180.96?15.70.42116
    “失水”10190.8313.50.24151
    “飽水”12240.85?2.40.57101
    下載: 導出CSV

    表  4  干濕循環12次后不同狀態下水泥基復合材料主要礦物組成表

    Table  4.   Mineral composition of cement-based composites under different conditions after twelve dry?wet cycles

    狀態礦物名稱化學式
    “失水”狀態碳酸鈣${\rm{CaC}}{{\rm{O}}_{\rm{3}}}$
    “飽水”狀態碳酸鈣${\rm{CaC}}{{\rm{O}}_{\rm{3}}}$
    碳硫硅鈣石${\rm{C}}{{\rm{a}}_{\rm{3}}}{\rm{Si}}{({\rm{OH}})_6}({\rm{C}}{{\rm{O}}_3})({\rm{S}}{{\rm{O}}_4}) \cdot 12{{\rm{H}}_{\rm{2}}}{\rm{O}}$
    鈣礬石${\rm{C}}{{\rm{a}}_{\rm{6}}}{\rm{A}}{{\rm{l}}_{\rm{2}}}{({\rm{S}}{{\rm{O}}_4})_3}{({\rm{OH}})_{12}} \cdot 2{\rm{6}}{{\rm{H}}_{\rm{2}}}{\rm{O}}$
    未風化層鈣礬石${\rm{C}}{{\rm{a}}_{\rm{6}}}{\rm{A}}{{\rm{l}}_{\rm{2}}}{({\rm{S}}{{\rm{O}}_4})_3}{({\rm{OH}})_{12}} \cdot 26{{\rm{H}}_{\rm{2}}}{\rm{O}}$
    碳酸鈣${\rm{CaC}}{{\rm{O}}_{\rm{3}}}$
    碳硫硅鈣石${\rm{C}}{{\rm{a}}_{\rm{3}}}{\rm{Si}}{({\rm{OH}})_6}({\rm{C}}{{\rm{O}}_3})({\rm{S}}{{\rm{O}}_{\rm{4}}}) \cdot 12{{\rm{H}}_{\rm{2}}}{\rm{O}}$
    其他
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qian M G, Shi P W, Xu J L. Mine Pressure and Rock Formation Control. 2nd Ed. Xuzhou: China University of Mining and Technology Press, 2010

    錢鳴高, 石平五, 許家林. 礦山壓力與巖層控制. 2版. 徐州: 中國礦業大學出版社, 2010
    [2] Hu B N. Backfill mining technology and development tendency in China coal mine. Coal Sci Technol, 2012, 40(11): 1

    胡炳南. 我國煤礦充填開采技術及其發展趨勢. 煤炭科學技術, 2012, 40(11):1
    [3] Zhao C Z, Zhou H Q, Qu Q D, et al. Preliminary test on mechanical properties of paste filling material. J China Univ Min Technol, 2004, 33(2): 35

    趙才智, 周華強, 瞿群迪, 等. 膏體充填材料力學性能的初步實驗. 中國礦業大學學報, 2004, 33(2):35
    [4] Zhang Y G, Dong F B. Research and practice of new mining technologies by backfilling with refuse under buildings in town. Coal Min Technol, 2008, 13(1): 31 doi: 10.3969/j.issn.1006-6225.2008.01.011

    張元功, 董鳳寶. 城鎮建筑群下矸石充填開采新技術的研究與實踐. 煤礦開采, 2008, 13(1):31 doi: 10.3969/j.issn.1006-6225.2008.01.011
    [5] Wang Q. Experimental research on filling mining of new high-water material. Zhongzhou Coal, 2016(9): 65

    王強. 新型高水材料充填開采試驗研究. 中州煤炭, 2016(9):65
    [6] Cui J K, Feng Y L, Sun C D, at el. Test of high-water material width and strength for roadway-side stowing and its application. Coal Min Technol, 2014, 19(5): 58

    崔景昆, 豐云雷, 孫春東, 等. 大采高高水材料巷旁充填體寬度與強度試驗研究與應用. 煤礦開采, 2014, 19(5):58
    [7] Yan Z P, Qi T Y, Zhang L X, at el. Study of ZKD quick-setting materials with high water content and technique of pump packing. J China Coal Soc, 1997, 22(3): 270 doi: 10.3321/j.issn:0253-9993.1997.03.009

    顏志平, 漆泰岳, 張連信, 等. ZKD高水速凝材料及其泵送充填技術的研究. 煤炭學報, 1997, 22(3):270 doi: 10.3321/j.issn:0253-9993.1997.03.009
    [8] Zhou H Q, Hou C J, Yi H W, at el. Research and application of the roadside backfilling technique with high water content materials in China and abroad. Ground Press Strata Control, 1991(4): 2

    周華強, 侯朝炯, 易宏偉, 等. 國內外高水巷旁充填技術的研究與應用. 礦山壓力與頂板管理, 1991(4):2
    [9] Sun C D, Feng G M. Technology of retaining roadway along gob by stowing with high-water-content material. Coal Min Technol, 2010, 15(1): 58 doi: 10.3969/j.issn.1006-6225.2010.01.020

    孫春東, 馮光明. 新型高水材料巷旁充填沿空留巷技術. 煤礦開采, 2010, 15(1):58 doi: 10.3969/j.issn.1006-6225.2010.01.020
    [10] Jia H G, Lai Y H, Wang W, at el. Roadway-side packing technology with new type high-water rapid hardening materials under the conditions of gob-side entry retaining and its application. China Coal, 2015, 41(1): 51 doi: 10.3969/j.issn.1006-530X.2015.01.012

    賈紅果, 來永輝, 王偉, 等. 沿空留巷條件下新型高水速凝材料巷旁充填技術及其應用. 中國煤炭, 2015, 41(1):51 doi: 10.3969/j.issn.1006-530X.2015.01.012
    [11] Shi G Y. Gateway retained along goaf technology with pier pillar backfilled with high water material in high gassy mine. Coal Scie Technol, 2014, 42(7): 30

    史國躍. 高瓦斯礦井高水充填墩柱沿空留巷技術. 煤炭科學技術, 2014, 42(7):30
    [12] Wang P, Zhang Y H. Performance improvement for high-water-content filling material beside gob-side entry retaining. Saf Coal Mines, 2016, 47(2): 51

    王鵬, 張耀輝. 沿空留巷巷旁高水充填材料性能改進. 煤礦安全, 2016, 47(2):51
    [13] Feng G M. Field measurement and analysis of ground behavior of roadway retained by packing high water content material along goaf side. Ground Press Strata Control, 1998(4): 13

    馮光明. 高水材料巷旁充填礦壓觀測與研究. 礦山壓力與頂板管理, 1998(4):13
    [14] Xie H, Liu C W, He T. Analysis on the law of roof and floor strata movement in coal mining with high-water material backfilling. Metal Mine, 2014(5): 5

    謝輝, 劉長武, 何濤. 高水材料充填開采工作面頂底板巖層活動規律分析. 金屬礦山, 2014(5):5
    [15] Cai S J, Mao S L, Fang Z L. Weathering characteristics and mechanisms of rapid-hardening backfilling materials. J Univ Sci Technol Beijing, 1996, 18(5): 406

    蔡嗣經, 毛市龍, 方祖烈. 高水速凝充填材料的風化特征和風化機理. 北京科技大學學報, 1996, 18(5):406
    [16] Song C Y, Cheng X L, Wang Z L. Weathering mechanism of ettringite. J Univ Sci Technol Beijing, 1999, 21(5): 459 doi: 10.3321/j.issn:1001-053X.1999.05.012

    宋存義, 程相利, 汪增樂. 鈣礬石材料硬化體風化機理. 北京科技大學學報, 1999, 21(5):459 doi: 10.3321/j.issn:1001-053X.1999.05.012
    [17] Ma Q Y, Yu P Y, Yuan P. Experimental study on creep properties of deep siltstone under cyclic wetting and drying. Chin J Rock Mech Eng, 2018, 37(3): 593

    馬芹永, 郁培陽, 袁璞. 干濕循環對深部粉砂巖蠕變特性影響的試驗研究. 巖石力學與工程學報, 2018, 37(3):593
    [18] Wang Z. Effects of dry-wet cycles on mechanical properties of fly ash high-moisture materials. Fly Ash Comprehens Utiliz, 2018(3): 40 doi: 10.3969/j.issn.1005-8249.2018.03.011

    王崢. 干濕循環對摻粉煤灰高水材料力學特性影響. 粉煤灰綜合利用, 2018(3):40 doi: 10.3969/j.issn.1005-8249.2018.03.011
    [19] Xie H, Liu C W. Analysis on influence of moisture content on deformation characteristics of the high-water-content material stone. J Sichuan Univ Eng Sci Ed, 2013, 45(Suppl 1): 1

    謝輝, 劉長武. 含水率對高水材料結石體變形特性的影響分析. 四川大學學報:工程科學版, 2013, 45(增刊 1):1
    [20] Liu D D. Study on Hydrating and Hardening Mechanisms of High-Water Rapid-Setting Material [Dissertation]. Xuzhou: China University of Mining and Technology, 2015

    劉丹丹. 高水速凝材料水化硬化機理研究[學位論文]. 徐州: 中國礦業大學, 2015
    [21] Li S, Li Y. Microcosmic differences between carbosulfite and ettringite. Sichuan Build Mater, 2013, 39(5): 34 doi: 10.3969/j.issn.1672-4011.2013.05.018

    李碩, 李楊. 碳硫硅鈣石與鈣礬石的微觀區別. 四川建材, 2013, 39(5):34 doi: 10.3969/j.issn.1672-4011.2013.05.018
    [22] Barnett S J, Halliwell M A, Crammond N J, et al. Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting. Cem Concr Compos, 2002, 24(3-4): 339 doi: 10.1016/S0958-9465(01)00085-3
  • 加載中
圖(7) / 表(4)
計量
  • 文章訪問數:  1390
  • HTML全文瀏覽量:  956
  • PDF下載量:  40
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-03-05
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回