Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance
-
摘要: 以鋼渣與生物質廢棄材料為研究對象,利用鋼渣中含有的金屬氧化物對生物質廢棄材料進行改性處理獲得生態活性炭,研究鋼渣種類、鋼渣粉磨時間和鋼渣超微粉用量對生態活性炭降解甲醛性能的影響。利用X-射線熒光光譜儀(XRF)、X-射線衍射儀(XRD)、激光粒度儀(LPSA)、傅立葉變換紅外光譜儀(FTIR)、比表面積及孔徑測定儀(BET)和掃描電子顯微鏡(SEM)測試鋼渣超微粉的化學成分、鋼渣超微粉的礦物組成、鋼渣超微粉的粒徑分布、鋼渣超微粉的結構組成、生態活性炭的孔結構和生態活性炭的微觀形貌。結果表明:鋼渣為電爐渣,鋼渣粉磨時間為90 min,鋼渣超微粉用量為20 g制備的生態活性炭具有良好的降解甲醛性能與合理的經濟性,即10 h后甲醛降解率為57.5%。電爐渣中Fe元素與Mn元素含量高,其中Fe元素促使大量甲醛在活性炭的多孔結構中形成富集,Mn元素對富集的甲醛進行催化降解,實現吸附降解與催化降解的協同作用。適當延長鋼渣粉磨時間可以減小鋼渣超微粉的粒徑大小與改善鋼渣超微粉的粒度分布均勻程度,有利于提高鋼渣超微粉與活性炭、甲醛的降解作用面積。適量的鋼渣超微粉可以提高生態活性炭的粉化率,抵消由于孔容積與比表面積降低導致的活性炭吸附降解作用下降的問題。Abstract: With steel slag and biomass waste material as the research object, biomass waste material was modified by metal oxide in steel slag to obtain ecological activated carbon. The influences of steel slag type, grinding time of steel slag, and the amount of steel slag ultrafine powder on the formaldehyde degradation performance of ecological activated carbon were studied. The chemical composition of steel slag, mineral composition of steel slag, particle size distribution of steel slag, structural composition of steel slag ultrafine powder, the pore structure of ecological activated carbon, and the microstructure of ecological activated carbon were characterized by X-ray fluorescence X-ray diffraction, laser particle size distribution analysis, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and scanning electron microscopy, respectively. The results show that the prepared ecological activated carbon show good formaldehyde degradation performance and reasonable economy; the degradation rate of formaldehyde after 10 h is 57.5%; when steel slag is electric furnace slag, the grinding time of the steel slag is 90 min, and the amount of steel slag ultrafine powder is 20 g. High contents of Fe and Mn were present in the electric furnace slag. Iron promoted the concentration of a large amount of formaldehyde in the porous structure of activated carbon, and Mn catalyzes the degradation of enriched formaldehyde, realizing the synergistic effect of adsorption degradation and catalytic degradation. Appropriately extending the grinding time of the steel slag can significantly reduce the particle size of the steel slag ultrafine powder and improve the particle size distribution uniformity of the steel slag ultrafine powder, which is beneficial to increasing the degradation area of steel slag ultrafine powder, activated carbon, and formaldehyde. An appropriate amount of steel slag ultrafine powder can improve the pulverization rate of ecological activated carbon and offset the decline of activated carbon adsorption performance due to the decrease of porosity and specific surface area of the activated carbon.
-
Key words:
- steel slag /
- biomass waste material /
- ecological activated carbon /
- formaldehyde /
- modified
-
圖 3 生態活性炭的掃描電鏡圖。(a) 鋼渣超微粉用量為0;(b) 鋼渣超微粉用量為10 g;(c) 鋼渣超微粉用量為20 g;(d) 鋼渣超微粉用量為30 g
Figure 3. SEM of ecological activated carbon: (a) the amount of steel slag ultrafine powder is 0; (b) the amount of steel slag ultrafine powder is 10 g; (c) the amount of steel slag ultrafine powder is 20 g; (d) the amount of steel slag ultrafine powder is 30 g
表 1 鋼渣種類對生態活性炭降解甲醛性能的影響
Table 1. Effect of steel slag types on the formaldehyde degradation performance of ecological activated carbon
鋼渣種類 鋼渣粉磨時間/
min鋼渣超微粉用量/
g10 h后甲醛降解率/
%— — — 34.6 熱悶渣I 90 20 41.2 熱悶渣II 90 20 43.9 電爐渣 90 20 57.5 風淬渣 90 20 50.4 表 2 鋼渣的化學成分(質量分數)
Table 2. Chemical composition of steel slag
% 鋼渣種類 CaO Fe2O3 SiO2 MgO MnO Al2O3 P2O5 TiO2 Cr2O3 其他 熱悶渣I 49.52 24.48 12.96 3.43 2.12 2.85 2.24 1.25 0.17 0.98 熱悶渣II 43.88 25.87 14.35 3.59 3.44 2.97 2.39 1.49 0.86 1.16 電爐渣 36.27 39.44 10.89 3.11 3.21 4.28 1.03 0.46 0.73 0.58 風淬渣 46.75 28.04 10.71 2.86 3.48 2.93 2.43 1.62 0.32 0.86 表 3 鋼渣粉磨時間對生態活性炭降解甲醛性能的影響
Table 3. Effect of steel slag grinding time on the formaldehyde degradation performance of ecological activated carbon
鋼渣種類 鋼渣粉磨時間/
min鋼渣超微粉用量/
g10 h后甲醛降解率/
%電爐渣 60 20 45.2 電爐渣 90 20 57.5 電爐渣 120 20 58.4 表 4 鋼渣超微粉的粒度分布
Table 4. Particle size distribution of steel slag ultrafine powder
鋼渣粉磨時間/min d90/μm d50/μm d10/μm d90/d10 (d90-d10)/d50 60 13.74 5.06 1.38 9.96 2.44 90 9.87 3.59 1.04 9.49 2.46 120 9.42 3.43 1.02 9.24 2.45 表 5 鋼渣超微粉用量對生態活性炭降解甲醛性能的影響
Table 5. Effect of the amount of steel slag ultrafine powder on the formaldehyde degradation performance of ecological activated carbon
鋼渣種類 鋼渣粉磨時間/
min鋼渣超微粉用量/
g10 h后甲醛降解率/
%電爐渣 90 10 43.6 電爐渣 90 20 57.5 電爐渣 90 30 52.6 表 6 生態活性炭的孔結構
Table 6. Pore structure of ecological activated carbon
鋼渣超微粉用量/
g孔容積/
(cm3·g?1)比表面積/
(m2·g?1)平均孔徑/
nm0 0.76 1087 10.89 10 0.73 1032 10.74 20 0.68 971 10.60 30 0.42 645 10.51 www.77susu.com -
參考文獻
[1] Chen L, Yin S F, Luo S L, et al. Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind Eng Chem Res, 2012, 51(19): 6760 doi: 10.1021/ie300567y [2] Zhao D, Peng T Y, Liu M, et al. Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure. Microporous Mesoporous Mater, 2008, 114(1-3): 166 doi: 10.1016/j.micromeso.2008.01.001 [3] Hsu N Y, Chen P Y, Chang H W, et al. Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot. Sci Total Environ, 2011, 409(9): 1677 doi: 10.1016/j.scitotenv.2011.01.042 [4] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 2006, 18(6): 2073 [5] Zhang X L, Zhang Y, Wang S S, et al. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon. Sci China Technol Sci, 2010, 53(9): 2515 doi: 10.1007/s11431-010-4058-5 [6] He Y Y, Qi C J, Zhong W J, et al. A study on the adsorption of Pb2+ in wastewater by walnut shell supported-Fe0. Fine Chem, 2014, 31(4): 480何元淵, 祁彩菊, 仲萬軍, 等. 核桃殼質負載納米零價鐵吸附廢水中的Pb2+. 精細化工, 2014, 31(4):480 [7] Han B, Zhou M H, Rong D. Preparation and characterization of activated carbon from rice straw. J Agro-Environ Sci, 2009, 28(4): 828 doi: 10.3321/j.issn:1672-2043.2009.04.034韓彬, 周美華, 榮達. 稻草秸稈活性炭的制備及其表征. 農業環境科學學報, 2009, 28(4):828 doi: 10.3321/j.issn:1672-2043.2009.04.034 [8] Sun Y, Webley P A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem Eng J, 2010, 162(3): 883 doi: 10.1016/j.cej.2010.06.031 [9] Sun K, Jiang J C. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy, 2010, 34(4): 539 doi: 10.1016/j.biombioe.2009.12.020 [10] Zabihi M, Ahmadpour A, Asl A H. Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J Hazard Mater, 2009, 167(1-3): 230 doi: 10.1016/j.jhazmat.2008.12.108 [11] Fang N J, Guo J X, Shu S, et al. Influence of textures, oxygen-containing functional groups and metal species on SO2 and NO removal over Ce-Mn/NAC. Fuel, 2017, 202: 328 doi: 10.1016/j.fuel.2017.04.035 [12] Yao G H, Gui K T, Wang F. Low-temperature De-NOx by selective catalytic reduction based on iron-based catalysts. Chem Eng Technol, 2010, 33(7): 1093 doi: 10.1002/ceat.201000015 [13] Ding J, Zhong Q, Zhang S L. Catalytic efficiency of iron oxides in decomposition of H2O2, for simultaneous NOx and SO2 removal: Effect of calcination temperature. J Mol Catal A Chem, 2014, 393: 222 doi: 10.1016/j.molcata.2014.06.018 [14] Ramezanianpour A A, Kazemian A, Moghaddam M A, et al. Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes. Mater Struct, 2016, 49(7): 2597 doi: 10.1617/s11527-015-0670-y [15] Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: Consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004 [16] Zhang H. Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375 [17] Zhang H. Cu?Ce/TiO2 moisture performance based on photocatalytic performance. J Mater Eng, 2018, 46(1): 114 doi: 10.11868/j.issn.1001-4381.2016.001100張浩. 基于光催化性能的Cu?Ce/TiO2濕性能. 材料工程, 2018, 46(1):114 doi: 10.11868/j.issn.1001-4381.2016.001100 [18] Fu Y L, Zhang Y F, Li G Q, et al. NO removal activity and surface characterization of activated carbon with oxidation modification. J Energy Inst, 2017, 90(5): 813 doi: 10.1016/j.joei.2016.06.002 [19] Guo Y Y, Li Y R, Zhu T Y, et al. Investigation of SO2 and NO adsorption species on activated carbon and the mechanism of NO promotion effect on SO2. Fuel, 2015, 143: 536 doi: 10.1016/j.fuel.2014.11.084 [20] Zhang H, Zhang X Y, Long H M. Spectroscopic analysis of weak acid modified steel slag powder. Spectrosc Spect Anal, 2018, 38(11): 3502張浩, 張欣雨, 龍紅明. 弱酸改性鋼渣微粉的光譜學分析. 光譜學與光譜分析, 2018, 38(11):3502 -