<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于無網格伽遼金法的連鑄坯凝固計算方法

王寧 王旭東 蔡來強 姚曼

王寧, 王旭東, 蔡來強, 姚曼. 基于無網格伽遼金法的連鑄坯凝固計算方法[J]. 工程科學學報, 2020, 42(2): 186-193. doi: 10.13374/j.issn2095-9389.2019.02.02.001
引用本文: 王寧, 王旭東, 蔡來強, 姚曼. 基于無網格伽遼金法的連鑄坯凝固計算方法[J]. 工程科學學報, 2020, 42(2): 186-193. doi: 10.13374/j.issn2095-9389.2019.02.02.001
WANG Ning, WANG Xu-dong, CAI Lai-qiang, YAO Man. Calculation of continuous casting billet solidification based on element-free Galerkin method[J]. Chinese Journal of Engineering, 2020, 42(2): 186-193. doi: 10.13374/j.issn2095-9389.2019.02.02.001
Citation: WANG Ning, WANG Xu-dong, CAI Lai-qiang, YAO Man. Calculation of continuous casting billet solidification based on element-free Galerkin method[J]. Chinese Journal of Engineering, 2020, 42(2): 186-193. doi: 10.13374/j.issn2095-9389.2019.02.02.001

基于無網格伽遼金法的連鑄坯凝固計算方法

doi: 10.13374/j.issn2095-9389.2019.02.02.001
基金項目: 國家自然科學基金資助項目(51474047)
詳細信息
    通訊作者:

    E-mail:hler@dlut.edu.cn

  • 中圖分類號: TG244+.3

Calculation of continuous casting billet solidification based on element-free Galerkin method

More Information
  • 摘要: 為考察無網格方法求解鑄坯凝固過程的可行性,本文依據移動最小二乘和變分原理,推導并建立了基于無網格伽遼金法的結晶器內鑄坯凝固過程二維非穩態傳熱/凝固數學模型。以小方坯凝固過程為對象,分別采用節點均勻布置、加密布置、隨機布置方式,模擬分析了小方坯凝固過程的溫度場變化,并將計算結果與參考解、有限元法數值解進行了對比,結果證實無網格伽遼金法在計算精度、自適應性、網格依賴性等方面均優于有限元法。研究結果為無網格方法應用于連鑄過程的傳熱、凝固以及應力/應變行為的數值計算提供參考。

     

  • 圖  1  支持域、背景網格、積分點和場節點示意

    Figure  1.  Support domains, background cells, evaluation points, and nodes

    圖  2  單元數量對溫度的影響

    Figure  2.  Influence of the number of elements on temperature

    圖  3  區域離散示意. (a) EFG (31×31節點); (b) 有限元 (30×30單元)

    Figure  3.  Schematics of discrete area: (a) EFG (31×31 nodes); (b) FEM (30×30 elements)

    圖  4  不同高度鑄坯橫截面溫度分布。(a) EFG (31×31節點); (b) 有限元(30×30單元);(c) 參考解 (300×300單元)

    Figure  4.  Temperature distribution of billet at different heights: (a) EFG (31×31 nodes); (b) FEM (30×30 elements); (c) reference solution (300×300 elements)

    圖  5  EFG法與有限元法數值解的對比. (a) 鑄坯角部; (b) 表面中心

    Figure  5.  Comparison between the numerical solutions obtained by EFG and FEM: (a) corner of slab; (b) midpoint of surface

    圖  6  區域加密離散示意. (a) EFG (31×31節點); (b) 有限元 (2056單元)

    Figure  6.  Distribution of local refinement near the boundary: (a) EFG (31×31 nodes); (b) FEM (2056 elements)

    圖  7  鑄坯表面溫度分布. (a) EFG (31×31節點); (b) 有限元 (2056單元)

    Figure  7.  Temperature distribution of billet surface: (a) EFG (31×31nodes); (b) FEM (2056 elements)

    圖  8  隨機布點示意. (a) 31×31節點; (b) 45×45節點

    Figure  8.  Distribution of random nodes: (a) 31×31 nodes; (b) 45×45 nodes

    圖  9  結晶器出口處鑄坯表面溫度分布

    Figure  9.  Temperature distribution of billet surface at mold exit

    表  1  工藝參數和鑄坯熱物性參數

    Table  1.   Casting conditions and thermophysical properties of slab

    參數數值
    拉速/(m·min?1)2.2
    澆鑄溫度/℃1530.0
    結晶器高度/m1.0
    液位高度/m0.85
    結晶器水量/(m3·h?1)119.8
    結晶器水流速/(m·s?1)12.7
    固/液相線溫度/℃1440.0/1505.0
    密度/(kg·m?3)7500-1.2(T?Tliq)
    導熱系數/(W·m?1·K?1)Kc(13.86 + 0.01113T)
    比熱容/(J·kg?1·K?1)666 + 0.17T
    潛熱/(J·kg?1)272000
    下載: 導出CSV

    表  2  兩種方法數值解的對比

    Table  2.   Comparison of the numerical results of two methods

    位置至彎月面距離EFG加密 (31×31節點)有限元加密 (2056單元)
    溫度/℃差值/℃溫度/℃差值/℃
    鑄坯角部300 mm1140.24?0.231141.10?1.09
    600 mm1058.85?0.271059.42?0.84
    結晶器出口1035.12?0.011035.69?0.58
    表面中心300 mm1339.800.391341.04?0.85
    600 mm1300.800.061301.43?0.57
    結晶器出口1286.01?0.071286.25?0.31
    下載: 導出CSV

    表  3  EFG 45×45隨機布點與有限元法數值解的對比

    Table  3.   Comparison of EFG 45×45 random nodes and FEM numerical results

    至彎月距離EFG (45×45節點)有限元 (31×31節點)有限元加密 (2056單元)
    溫度/℃差值/℃溫度/℃差值/℃溫度/℃差值/℃
    300 mm1139.510.501143.27?3.261141.10?1.09
    600 mm1058.61?0.031059.97?1.391059.42?0.84
    結晶器出口1035.17?0.061035.62?0.511035.69?0.58
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jing D J, Cai K K. Numerical simulation of the coupling phenomenon between thermal and mechanical fields of billet in continuous casting mold. J Univ Sci Technol Beijing, 2000, 22(5): 417 doi: 10.3321/j.issn:1001-053X.2000.05.007

    荊德君, 蔡開科. 連鑄結晶器內鑄坯溫度場和應力場耦合過程數值模擬. 北京科技大學學報, 2000, 22(5):417 doi: 10.3321/j.issn:1001-053X.2000.05.007
    [2] Dalrymple R A, Rogers B D. Numerical modeling of water waves with the SPH method. Coastal Eng, 2006, 53(2-3): 141 doi: 10.1016/j.coastaleng.2005.10.004
    [3] Cingoski V, Miyamoto N, Yamashita H. Element-free Galerkin method for electromagnetic field computations. IEEE Trans Magn, 1998, 34(5): 3236 doi: 10.1109/20.717759
    [4] Adams B, Wicke M. Meshless approximation methods and applications in physics based modeling and animation // EUROGRAPHICS 2009. Munich, 2009: 213
    [5] Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids, 2003, 32(3): 305 doi: 10.1016/S0045-7930(01)00105-0
    [6] Zhang L, Shen H F, Rong Y M, et al. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Mater Sci Eng A, 2007, 466(1-2): 71 doi: 10.1016/j.msea.2007.02.103
    [7] Vertnik R, ?arler B. Solution of a continuous casting of steel benchmark test by a meshless method. Eng Anal Boundary Elem, 2014, 45: 45 doi: 10.1016/j.enganabound.2014.01.017
    [8] Yamasaki N, Shima S, Tsunenari K, et al. Particle-based numerical analysis of spray water flow in secondary cooling of continuous casting machines. ISIJ Int, 2015, 55(5): 976 doi: 10.2355/isijinternational.55.976
    [9] Vaghefi R, Hematiyan M R, Nayebi A. Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov - Galerkin method. Eng Anal Boundary Elem, 2016, 71: 34 doi: 10.1016/j.enganabound.2016.07.001
    [10] Hostos J C á, Bencomo A D, Cabrera E S P. Simple iterative procedure for the thermal-mechanical analysis of continuous casting processes using the element-free Galerkin method. J Therm Stresses, 2018, 41(2): 160 doi: 10.1080/01495739.2017.1389325
    [11] Hu P H, Wang X D, Wei J J, et al. Investigation of liquid/solid slag and air gap behavior inside the mold during continuous slab casting. ISIJ Int, 2018, 58(5): 892 doi: 10.2355/isijinternational.ISIJINT-2017-393
    [12] Fan Y H. A Study of Meshless Method in Numerical Heat Transfer[Dissertation]. Nanjing: Nanjing University of Science & Technology, 2005

    范悅宏. 無網格法在數值傳熱學中的應用研究[學位論文]. 南京: 南京理工大學, 2005
    [13] Savage J, Pritchard W H. The problem of rupture of the billet in the continuous casting of steel. J Iron Steel Inst, 1954, 178(3): 269
    [14] Li D H, Gao Y B, Xin Q B, et al. The processing method and application study for latent heat releases in alloy castings. Foundry, 2004, 53(12): 1005 doi: 10.3321/j.issn:1001-4977.2004.12.013

    李東輝, 高云寶, 辛啟斌, 等. 鑄件凝固潛熱的處理方法與應用研究. 鑄造, 2004, 53(12):1005 doi: 10.3321/j.issn:1001-4977.2004.12.013
    [15] Liu X. Meshless Method. Beijing: Science Press, 2011

    劉欣. 無網格方法. 北京: 科學出版社, 2011
    [16] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. Int J Numer Methods Eng, 1994, 37(2): 229 doi: 10.1002/nme.1620370205
    [17] Liu G R, Gu Y T. An Introduction to Meshfree Methods and Their Programming. Dordrecht: Springer, 2005
    [18] Wu S C, Liu G R, Cui X Y, et al. An edge-based smoothed point interpolation method (ES-PIM) for heat transfer analysis of rapid manufacturing system. Int J Heat Mass Transfer, 2010, 53(9-10): 1938 doi: 10.1016/j.ijheatmasstransfer.2009.12.062
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數:  1632
  • HTML全文瀏覽量:  925
  • PDF下載量:  62
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-02-02
  • 刊出日期:  2020-02-01

目錄

    /

    返回文章
    返回