Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action
-
摘要: 基于某海上風電塔進行現場監測、有限元模擬及室內振動臺試驗研究,考慮樁-土相互作用并對結構進行精細化數值模擬分析,研究了不同沖刷深度下結構自振周期的變化及不同沖刷深度對結構地震動作用下動力響應的影響規律.現場監測結果表明:6#風機結構受海水沖刷嚴重,與同時期建造的15#風機相比振動幅度明顯,說明沖刷深度對結構的影響不可忽略.數值模擬分析表明:沖刷深度主要影響結構高階振型,使結構自振周期變長,增幅最大達33%.由于沖刷致使土層對高柔性結構約束減弱,結構將產生大的振動進而導致風機停擺;在遭遇7度罕遇地震時,應立即停止發電工作.室內縮尺振動臺試驗與數值模擬所得結果的變化曲線較為均勻,趨勢上較吻合,充分驗證了數值模擬的準確性.Abstract: The operational environment of offshore wind turbine towers is complex, and the harsh service environment makes them more vulnerable to damage under conditions of complex stress such as sea water scouring. The scouring pit has a great influence on the vibration of wind turbine towers. It is of great importance to study the dynamic response to earthquakes of wind turbine towers under scouring depths. The research object of this study was a wind turbine tower at a wind farm in Jiangsu Province, which had a seven-degree seismic fortification in the area. Based on finite element simulation, on-site monitoring and a shaking table test of the offshore wind tower, and considering pile-soil interaction in a refined model, variation in the natural vibration period of the structure under different scouring depths and the influence of different scouring depths on the dynamic response of the structure under seismic excitation were studied. On-site monitoring results show that the #6 wind turbine structure is seriously eroded by sea water, and the vibration amplitude is clear compared with the #15 wind turbine built in the same period. These aspects indicate that the influence of scouring depth on the structure could not be ignored. Analysis of numerical simulation show that scouring depth has a great influence on the high-order mode of the structure, which lengthen the natural vibration period of the structure by a maximum of 33%. On account of scouring, constraints of the soil layer on the highly flexible structure were weakened, and the structure produced considerable vibration, which could lead to damage of structures such as wind towers. Results also indicate that when encountering a seven-degree rare earthquake, power generation should immediately be stopped. The variation curves of the shaking table test and the numerical simulation results were more uniform, and the trend coincided well, which fully verified the accuracy of the numerical simulation.
-
表 1 現場急剎車試驗自振頻率
Table 1. Natural vibration frequency of field braking test
測試工況 6#風機 15#風機 自振頻率/Hz 自振周期/s 自振頻率/Hz 自振周期/s 第一次急剎車試驗 0.319 3.135 0.331 3.021 第二次急剎車試驗 0.318 3.145 0.327 3.058 表 2 土層及地質參數表
Table 2. Soil layer and geological parameter
編號 類型 深度/m 有效重度, γ/(kN·m-3) 極限側阻力標準值, qsik/kPa 地基抗力比例系數,m/(kN·m-4) 內摩擦角, ?/(°) 不排水剪切強度, Cu/kPa 1/2最大應力時的應變, εc 極限抗力側移值,yc/mm 1 粉砂 4 9.8 15 1400 32 / / / 2 粉土 3 10 30 1600 30.7 / / / 3 粉砂 6 10 60 4000 32.6 / / / 3-夾 層狀粉土 6 8.2 32 2000 28.5 / / / 4 粉質黏土 3 9.5 52 4500 / 32 0.009 112.5 6-3 粉細砂 12 10 84 6000 34.1 / / / 表 3 沖刷前后風電塔支撐結構振動模態比較
Table 3. Comparison of vibration modes of wind turbine tower supporting structures before and after scouring
模態階數 無沖刷結構/Hz 沖刷5 m結構/Hz 降幅/% 沖刷10 m結構/Hz 降幅/% 1 0.306 0.301 1.6 0.291 4.9 2 0.311 0.305 1.9 0.295 5.1 3 0.916 0.906 1.1 0.890 2.8 4 1.225 1.205 1.6 1.172 4.3 5 1.460 1.406 3.7 1.361 6.8 6 3.095 2.942 4.9 2.715 12.3 7 3.223 2.985 7.4 2.774 13.9 8 7.017 5.819 17.1 5.683 19.0 9 7.061 6.560 7.1 6.002 15.0 10 8.186 6.597 19.4 6.124 25.2 表 4 不同沖刷深度結構在不同地震動作用下的動力響應結果
Table 4. Dynamic response of structures with different scouring degrees under different ground motions
地震動名稱 峰值調整/(cm·s-2) 最大響應加速度/(m·s-2) 加速度放大率/% 最大響應位移/m 最大響應應力/MPa 沖刷5 m 沖刷10 m 沖刷5 m 沖刷10 m 沖刷5 m 沖刷10 m 沖刷5 m 沖刷10 m Imperial
Valley-06220 9.623 10.267 9.6 17.0 0.443 0.477 68.7 71.3 400 17.610 18.788 10.3 17.7 0.811 0.873 125.8 130.5 1000 44.170 47.125 11.8 19.3 2.512 2.723 312.2 327.4 T1-Ⅲ-1 220 5.724 6.240 1.2 10.3 0.413 0.461 56.8 60.5 400 10.400 11.286 2.1 10.8 0.749 0.838 103.1 109.9 1000 26.043 28.262 6.1 15.1 2.199 2.430 260.9 275.3 T2-Ⅲ-1 220 4.151 4.396 1.1 7.1 0.231 0.240 34.5 45.6 400 9.473 10.050 1.7 7.9 0.418 0.434 67.3 82.6 1000 21.199 22.617 3.2 10.1 1.228 1.274 169.4 206.7 www.77susu.com -
參考文獻
[1] Xue J T, Wang W, Yang M. Analysis of scour effect on bearing performance of offshore wind turbine pile foundation. Build Sci, 2012, 28(Suppl 1): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2012S1023.htm薛九天, 王偉, 楊敏. 海水沖刷效應對海上風機樁基承載性能的影響分析. 建筑科學, 2012, 28(增刊1): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2012S1023.htm [2] Hansen E A, Nielsen A W, Simonsen H J, et al. Scour protection around offshore wind turbine foundations, full-scale measurements//Scientific Proceedings of the European Wind Energy Conference. Milan: 2007 [3] Yan G H, Gu H, Lu Z M, et al. The influence analysis of foundation scouring on dynamic characteristics of the tower supporting system of offshore wind farm. Eng Sci, 2011, 13(1): 69 doi: 10.3969/j.issn.1009-1742.2011.01.010嚴根華, 古華, 陸忠民, 等. 基礎沖刷對海上風電場塔架支撐系統動力特性的影響分析. 中國工程科學, 2011, 13(1): 69 doi: 10.3969/j.issn.1009-1742.2011.01.010 [4] Zhang D D, Cheng Y, Shang H L, et al. Effect of scour on nature frequencies of offshore wing turbine structures. Spec Struct, 2017, 34(2): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG201702003.htm張冬冬, 程曄, 商紅磊, 等. 沖刷引起的土體變化對海上風電結構自振頻率的影響研究. 特種結構, 2017, 34(2): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG201702003.htm [5] Tian S G, Chen Q J. Analysis of dynamic characteristics of offshore wind power foundation with consideration of fluid-structure interaction. Chin Q Mech, 2014, 35(3): 473 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201403012.htm田樹剛, 陳清軍. 考慮流固耦合的近海風電支撐體系自振特性分析. 力學季刊, 2014, 35(3): 473 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201403012.htm [6] Li K W, Song B, Huang S. Dynamic response analysis of offshore wind tower founded on monopole considering FSI. J Build Struct, 2014, 35(4): 318 https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201404041.htm李凱文, 宋波, 黃帥. 考慮流固耦合效應的海上單樁式風電塔動力響應研究. 建筑結構學報, 2014, 35(4): 318 https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201404041.htm [7] Kim D H, Lee S G, Lee I K. Seismic fragility analysis of 5 MW offshore wind turbine. Renewable Energy, 2014, 65: 250 doi: 10.1016/j.renene.2013.09.023 [8] Takehiko S, Takeshi I. Design formulae on concrete capacity of wind turbine pedestal based on the non-linear FEM analysis. J Struct Eng, 2014. 60: 134佐野健彥, 石原孟. 非線形FEM解析に基づく風車無筋ペデスタルの耐力評価式の提案. 構造工學論文集, 2014, 60: 134 [9] He H N. The Evolutional Study on Bearing Performance of Bridge Pile Foundation Under Scour Condition [Dissertation]. Nanjing: Southeast University, 2015何泓男. 沖刷作用下橋梁樁基承載性能演化研究[學位論文]. 南京: 東南大學, 2015 [10] Zhu W Q. Calculation method and safeguard measurement of wind turbine scoured on the sea. Electr Power Surv Des, 2016(Suppl 2): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC2016S2010.htm朱偉強. 海上風機沖刷計算方法及防護措施. 電力勘測設計, 2016(增刊2): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC2016S2010.htm [11] Hu D, Li F, Zhang K Y. Experment on the lateral load capacity of single piles under scour conditions. J Hydraul Eng, 2015, 46(Suppl 1): 263 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1049.htm胡丹, 李芬, 張開銀. 沖刷作用下單樁水平承載特性試驗研究及數值模擬. 水利學報, 2015, 46(增刊1): 263 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1049.htm [12] Yang S L, Ma H W. Study on the optimum geometry of offshore wind turbine monopiles unprotected against scour. J Ocean Technol, 2018, 37(1): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201801013.htm楊少磊, 馬宏旺. 考慮沖刷情況下海上風電單樁基礎優化設計研究. 海洋技術學報, 2018, 37(1): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201801013.htm [13] Wang Z F. The Influence of Foundation Scouring on the Seismic Performance of a Bridge Under the Background of Climate Change [Dissertation]. Beijing: Beijing Jiaotong University, 2012王志豐. 考慮氣候變化背景下基礎沖刷對橋梁抗震性能的影響[學位論文]. 北京: 北京交通大學, 2012 [14] Whitehouse R J, Harris J M, Sutherland J, et al. The nature of scour development and scour protection at offshore windfarm foundations. Mar Pollut Bull, 2011, 62(1): 73 doi: 10.1016/j.marpolbul.2010.09.007 [15] Song B, Li J R, Wang H L, et al. Earthquake response analysis of in-service offshore wind towers considering effects of tide level and hydrodynamic pressure. J Archit Civil Eng, 2015, 32(2): 35 doi: 10.3969/j.issn.1673-2049.2015.02.004宋波, 李吉人, 王海龍, 等. 考慮潮位及動水壓力影響的在役海上風電塔地震響應分析. 建筑科學與工程學報, 2015, 32(2): 35 doi: 10.3969/j.issn.1673-2049.2015.02.004 [16] Japan Road Association. Guide to Road Bridge V Seismic Design. Tokyo: Japan Maru Shan Publishing House, 1995日本道路協會. 道路橋示方書V耐震設計篇. 東京: 日本丸善出版社, 1995 [17] Han X L, Xie C D, Ji J, et al. Ground motion selection for elasto-plastic time-history analysis of long-period structure. China Civil Eng J, 2016, 49(6): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606005.htm韓小雷, 謝燦東, 季靜, 等. 長周期結構彈塑性時程分析的地震波選取. 土木工程學報, 2016, 49(6): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606005.htm -