-
摘要: 針對膏體充填技術中添加絮凝劑對尾砂濃密后濃度提高有限,且屈服應力增大,流動性降低等問題,研究了絮凝劑?濃密增效劑共同作用,進一步提高全尾砂膏體充填料漿濃度,降低料漿屈服應力,并從微觀角度進行機理分析. 結果表明:通過沉降與流變試驗發現,最佳添加工藝為加入絮凝劑沉降完畢后再加入濃密增效劑,固相質量分數可提高8.57%~10.13%,同時屈服應力降低6.68~12.85 Pa;多組分濃密增效劑不僅能降低單耗與成本,還可以提高膏體充填材料的抗壓強度;灰砂質量比1∶12并添加濃密增效劑的膏體充填材料28 d抗壓強度為2.5 MPa,與灰砂質量比1∶6未添加濃密增效劑的膏體充填材料強度相差小于20%;通過總有機碳(TOC)吸附試驗與Zeta電位試驗發現,濃密增效劑具有吸附與分散的作用,會打開絮凝結構,釋放絮團間水,從而提高尾砂濃度,并改善尾砂顆粒的流動性.Abstract: The mine tailings generated from metallic ore not only occupies a large area of surface resources but also easily causes mud-rock flow and tailings dam failure. Moreover, the existence of a large number of underground voids threatens the safety of underground mining operations and can induce mines earthquake and surface subsidence. The paste filling technology involves thickening the mine tailings into paste and placing the paste in underground voids. The technology has been widely accepted and applied around the world for its advantages in safety, environmental protection, economy, and high efficiency. The dewatering of mine tailings is a prerequisite for the paste filling process. In the paste backfill, after tailings thickening, the concentration increase is limited, the yield stress is increased, and fluidity is reduced with flocculant dosage. The flocculant dosage and thickening synergist work together to further increase unclassified tailings paste concentration and reduce slurry yield stress. The mechanism of the thickening synergist was researched from a microscopic point of view. The results show that the best addition method is to add thickening synergist after tailings settlement with flocculant dosage by settlement and rheological test. The solid mass fraction can be increased by 8.57%?10.13%, and the yield stress can be reduced by 6.68?12.85 Pa. The multi-component thickening synergist can not only reduce unit consumption and cost but also improve the compressive strength of the paste backfill material. The compressive strength of paste backfill material with thickening synergist and cement-tailings mass ratio of 1∶12 is 2.5 MPa at the age of 28 d. The difference is less than 20% compared with the compressive strength of the material with cement-tailings mass ratio of 1∶6 and without thickening synergist. By total organic carbon adsorption test and Zeta potential test, the synergist is found to have functions of adsorption and dispersion. It can destroy the flocculation structure and release the contained water, thereby increasing the tailings concentration and improving the fluidity of tailings particles.
-
Key words:
- paste backfill /
- slurry thickening /
- thickening synergist /
- mechanism /
- adsorption and dispersion
-
表 1 尾砂的化學成分(質量分數)
Table 1. Chemical composition of tailings
% SiO2 Al2O3 Fe2O3 K2O MgO CaO MnO Na2O TiO2 SO3 P2O5 65.83 16.89 2.30 7.46 0.31 3.46 0.08 1.53 0.29 0.60 0.09 表 2 成本分析
Table 2. Cost analysis result
濃密增效劑 灰砂質量比 28 d抗壓強度/MPa 濃密增效劑成本/(元·t?1) 濃密增效劑、水泥、運輸等總成本/(元·t?1) 節約成本/(元·t?1) 無 1∶6 3.04 0 125 0 Ⅰ 1∶12 2.45 8.5 75 50 Ⅱ 1∶12 2.50 6.5 72 53 無 1∶12 1.01 0 62.5 0 Ⅰ 1∶24 1.03 8.5 44 18.5 Ⅱ 1∶24 0.98 6.5 41 21.5 表 3 添加劑的組成
Table 3. Composition of additive
試樣 絮凝劑 濃密增效劑 質量分數/% 占試樣質量分數/% 質量分數/% 占試樣質量分數/% A 1 0.2 — — B 1 0.2 10 0.6 C 1 0.2 — — D 1 0.2 10 0.6 表 4 碳吸附試驗結果
Table 4. Carbon adsorption test results
mg·g?1 A B C D m n r 70.36 70.56 81.09 93.26 10.73 22.7 11.97 www.77susu.com -
參考文獻
[1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [2] Miao X X, Qian M G. Research on green mining of coal resources in China: current status and future prospects. J Min Saf Eng, 2009, 26(1): 1 doi: 10.3969/j.issn.1673-3363.2009.01.001繆協興, 錢鳴高. 中國煤炭資源綠色開采研究現狀與展望. 采礦與安全工程學報, 2009, 26(1):1 doi: 10.3969/j.issn.1673-3363.2009.01.001 [3] Wang L H, Bao A H, Luo Y Y. Development and outlook on the filling method in China. Min Res Dev, 2017, 37(3): 1王麗紅, 鮑愛華, 羅園園. 中國充填技術應用與展望. 礦業研究與開發, 2017, 37(3):1 [4] Chang Q L, Zhou H Q, Bai J B, et al. Stability study and practice of overlying strata with paste backfilling. J Min Saf Eng, 2011, 28(2): 279 doi: 10.3969/j.issn.1673-3363.2011.02.021常慶糧, 周華強, 柏建彪, 等. 膏體充填開采覆巖穩定性研究與實踐. 采礦與安全工程學報, 2011, 28(2):279 doi: 10.3969/j.issn.1673-3363.2011.02.021 [5] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Metal Mine, 2016(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1 doi: 10.3969/j.issn.1001-1250.2016.07.001 [6] Liu Q, Zhang X W. Overview of the research progress of the paste backfill technology in China. Mod Min, 2016(5): 1 doi: 10.3969/j.issn.1674-6082.2016.05.001劉瓊, 張希巍. 中國膏體充填技術研究進展概述. 現代礦業, 2016(5):1 doi: 10.3969/j.issn.1674-6082.2016.05.001 [7] Li G C, Wang H J, Wu A X, et al. Key parameters determination of deep cone thickener based on dynamical settling and compaction experiments. Chin J Nonferrous Met, 2017, 27(8): 1693李公成, 王洪江, 吳愛祥, 等. 基于動態沉降壓密實驗的深錐濃密機關鍵參數確定. 中國有色金屬學報, 2017, 27(8):1693 [8] Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152 [9] Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566王洪江, 王勇, 吳愛祥, 等. 細粒全尾動態壓密與靜態壓密機理. 北京科技大學學報, 2013, 35(5):566 [10] Wu A X, Zhou J, Yin S H, et al. Influence factors on flocculation sedimentation of unclassified tailings. Chin J Nonferrous Met, 2016, 26(2): 439吳愛祥, 周靚, 尹升華, 等. 全尾砂絮凝沉降的影響因素. 中國有色金屬學報, 2016, 26(2):439 [11] Jiao H Z, Wang H J, Wu A X, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings. J Univ Sci Technol Beijing, 2010, 32(6): 702焦華喆, 王洪江, 吳愛祥, 等. 全尾砂絮凝沉降規律及其機理. 北京科技大學學報, 2010, 32(6):702 [12] Li H, Wang H J, Wu A X, et al. Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics. J Univ Sci Technol Beijing, 2013, 35(12): 1553李輝, 王洪江, 吳愛祥, 等. 基于尾砂沉降與流變特性的深錐濃密機壓耙分析. 北京科技大學學報, 2013, 35(12):1553 [13] Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. J Univ Sci Technol Beijing, 2013, 35(11): 1419王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11):1419 [14] Wang Y, Wu A X, Wang H J, et al. Effect of flocculation and dilution on the tailings setting performance and project proposal. J Wuhan Univ Technol, 2014, 36(9): 114王勇, 吳愛祥, 王洪江, 等. 絮凝和稀釋對尾礦沉降性能的影響及工程建議. 武漢理工大學學報, 2014, 36(9):114 [15] Yang L H, Wang H J, Wu A X, et al. Effect of flocculation settling on rheological characteristics of full tailing slurry. J Cent South Univ Sci Technol, 2016, 47(10): 3523楊柳華, 王洪江, 吳愛祥, 等. 絮凝沉降對全尾砂料漿流變特性的影響. 中南大學學報(自然科學版), 2016, 47(10):3523 -