<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于集成案例推理方法的RH精煉鋼水終點溫度預測

馮凱 徐安軍 賀東風 汪紅兵

馮凱, 徐安軍, 賀東風, 汪紅兵. 基于集成案例推理方法的RH精煉鋼水終點溫度預測[J]. 工程科學學報, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023
引用本文: 馮凱, 徐安軍, 賀東風, 汪紅兵. 基于集成案例推理方法的RH精煉鋼水終點溫度預測[J]. 工程科學學報, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023
FENG Kai, XU An-jun, HE Dong-feng, WANG Hong-bing. End temperature prediction of molten steel in RH based on integrated case-based reasoning[J]. Chinese Journal of Engineering, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023
Citation: FENG Kai, XU An-jun, HE Dong-feng, WANG Hong-bing. End temperature prediction of molten steel in RH based on integrated case-based reasoning[J]. Chinese Journal of Engineering, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023

基于集成案例推理方法的RH精煉鋼水終點溫度預測

doi: 10.13374/j.issn2095-9389.2018.s1.023
基金項目: 

國家重點研發計劃資助重點專項 (2016YFB0601301)

國家自然科學基金資助項目 (51574032)

中央高校基本科研業務費資助項目 (FRF-TP-16-081A1)

詳細信息
    通訊作者:

    馮凱, E-mail:fengkai-show@163.com

  • 中圖分類號: TF769.4

End temperature prediction of molten steel in RH based on integrated case-based reasoning

  • 摘要: 針對RH工序終點鋼水溫度預測問題, 提出一種基于多元線性回歸和遺傳算法改進的集成案例推理方法.首先, 針對一般案例推理方法中缺少影響因素精選方法的問題, 利用多元線性回歸進行屬性約簡;然后, 針對案例檢索中相似度計算缺少權重計算方法的問題, 利用遺傳算法進行權重優化;最后, 基于精簡的影響因素和優化的權重, 利用改進灰色關聯相似度進行案例檢索, 實現RH終點鋼水溫度預測.利用某鋼鐵企業RH工序實際生產數據分別對多元線性回歸、BP神經網絡、一般案例推理方法和集成案例推理方法進行測試, 結果表明, 集成案例推理方法在多個溫度區間比多元線性回歸、BP神經網絡和一般案例推理方法都有更高的預測精度.

     

  • [1] Wang H B, Cai J, Feng K. Predicting the endpoint phosphorus content of molten steel in BOF by two-stage hybrid method. J Iron Steel Res Int, 2014, 21 (S1) :65
    [2] Liang Y R, Wang H B, Xu A J, et al. A two-step case-based reasoning method based on attributes reduction for predicting the endpoint phosphorus content. ISIJ Int, 2015, 55 (5) :1035
    [3] Wang X, Yuan P, Mao Z, et al. Molten steel temperature prediction model based on bootstrap feature subsets ensemble regression trees. Knowledge Based Syst, 2016, 101 (6) :48
    [4] Wang X, You M, Mao Z, et al. Tree-structure ensemble general regression neural networks applied to predict the molten steel temperature in ladle furnace. Adv Eng Inf, 2016, 30 (3) :368
    [5] Yue Y J, Yao Y D, Zhao H, et al. BOF endpoint prediction based on multi-neural network model. Appl Mech Mater, 2014, 441:666
    [6] Wang Z, Xie F, Wang B, et al. The control and prediction of end-point phosphorus content during BOF steelmaking process.Steel Res Int, 2014, 85 (4) :599
    [7] Wang H B, Xu A J, Ai L X, et al. Prediction of endpoint phosphorus content of molten steel in BOF using weighted K-means and GMDH neural network. J Iron Steel Res Int, 2012, 19 (1) :11
    [8] Feng K, He D, Xu A, et al. End temperature prediction of molten steel in LF based on CBR-BBN. Steel Res Int, 2016, 87 (1) :79
    [9] LüW, Mao Z Z, Yuan P. Ladle furnace steel temperature prediction model based on partial linear regularization networks with sparse representation. Steel Res Int, 2012, 83 (3) :288
    [10] Ahmad I, Kano M, Hasebe S, et al. Gray-box modeling for prediction and control of molten steel temperature in tundish. J Process Control, 2014, 24 (4) :375
    [11] Okura T, Ahmad I, Kano M, et al. High-performance prediction of molten steel temperature in tundish through gray-box model.ISIJ Int, 2013, 53 (1) :76
    [12] Wang H B, Xu A J, Ai L X, et al. An integrated CBR model for predicting endpoint temperature of molten steel in AOD. ISIJ Int, 2012, 52 (1) :80
    [13] He F, Xu A J, Wang H B, et al. End temperature prediction of molten steel in LF based on CBR. Steel Res Int, 2012, 83 (11) :1079
    [14] Feng K, Wang H B, Xu A J, et al. Endpoint temperature prediction of molten steel in RH using improved case-based reasoning. Int J Miner Metall Mater, 2013, 20 (12) :1148
    [15] Pal S, Halder C. Optimization of phosphorous in steel produced by basic oxygen steel making process using multi-objective evolutionary and genetic algorithms. Steel Res Int, 2017, 88 (3) :art.No. 1600193
    [16] Worapradya K, Thanakijkasem P. Optimising steel production shedules via a hierarchical genetic algorithm. S Afr J Ind Eng, 2014, 25 (2) :209
  • 加載中
計量
  • 文章訪問數:  14
  • HTML全文瀏覽量:  6
  • PDF下載量:  0
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-01-20
  • 網絡出版日期:  2023-07-18

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com