<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電弧爐煉鋼集束氧槍射流沖擊深度特征規律研究

劉福海 魏光升 朱榮 唐天平 常軍 蘇榮芳 劉潤藻

劉福海, 魏光升, 朱榮, 唐天平, 常軍, 蘇榮芳, 劉潤藻. 電弧爐煉鋼集束氧槍射流沖擊深度特征規律研究[J]. 工程科學學報, 2018, 40(S1): 130-137. doi: 10.13374/j.issn2095-9389.2018.s1.019
引用本文: 劉福海, 魏光升, 朱榮, 唐天平, 常軍, 蘇榮芳, 劉潤藻. 電弧爐煉鋼集束氧槍射流沖擊深度特征規律研究[J]. 工程科學學報, 2018, 40(S1): 130-137. doi: 10.13374/j.issn2095-9389.2018.s1.019
LIU Fu-hai, WEI Guang-sheng, ZHU Rong, TANG Tian-ping, CHANG Jun, SU Rong-fang, LIU Run-zao. Study of Penetration Depth Characteristics of Coherent Jet in EAF Steelmaking[J]. Chinese Journal of Engineering, 2018, 40(S1): 130-137. doi: 10.13374/j.issn2095-9389.2018.s1.019
Citation: LIU Fu-hai, WEI Guang-sheng, ZHU Rong, TANG Tian-ping, CHANG Jun, SU Rong-fang, LIU Run-zao. Study of Penetration Depth Characteristics of Coherent Jet in EAF Steelmaking[J]. Chinese Journal of Engineering, 2018, 40(S1): 130-137. doi: 10.13374/j.issn2095-9389.2018.s1.019

電弧爐煉鋼集束氧槍射流沖擊深度特征規律研究

doi: 10.13374/j.issn2095-9389.2018.s1.019
基金項目: 

國家自然科學基金資助項目 (51734003, 51474024, 51574021)

詳細信息
    通訊作者:

    魏光升, E-mail:wgshsteel@126.com

  • 中圖分類號: TF741.5

Study of Penetration Depth Characteristics of Coherent Jet in EAF Steelmaking

  • 摘要: 電弧爐煉鋼廣泛采用集束射流供氧技術以強化熔池攪拌、加速冶金反應和提升產品質量.本文利用數學分析方法推導出射流沖擊深度理論計算模型并進行了修正, 利用數值模擬和水模型實驗方法驗證所推導計算模型的可靠性.實驗結果表明:集束射流與普通超音速射流的沖擊深度規律相似.同射流條件下, 隨著氧槍槍位的提升, 沖擊深度逐漸減小;同槍位條件下, 集束射流沖擊深度大于普通超音速射流沖擊深度;集束射流的k值和射流軸線密度大于普通超音速射流, 這表現為相同氧槍槍位條件下, 集束射流的沖擊深度更深.

     

  • [1] Wei G S, Zhu R, Cheng T, et al. Numerical simulation of jet behavior and impingement characteristics of preheating shrouded supersonic jets. J Iron Steel Res Int, 2016, 23 (10) :997
    [2] Li Q, Li M M, Kuang S B, et al. Numerical simulation of the interaction between supersonic oxygen jets and molten slag-metal bath in steelmaking BOF process. Metall Mater Trans B, 2015, 46 (3) :1494
    [3] Dong K, Zhu R, Gao W, et al. Simulation of three-phase flow and lance height effect on the cavity shape. Int J Miner Metall Mater, 2014, 21 (6) :523
    [4] Ersson M, Tilliander A, Jonsson L, et al. A mathematical model of an impinging air jet on a water surface. ISIJ Int, 2008, 48 (4) :377
    [5] Hwang H Y, Irons G A. Mathematical modeling of impinging gas jets on liquid surfaces. Metall Mater Trans B, 2011, 42 (3) :575
    [6] Alam M, Naser J, Brooks G, et al. A computational fluid dynamics model of shrouded supersonic jet impingement on a water surface. ISIJ Int, 2012, 52 (6) :1026
    [7] Li Z Z, Zhu R, Liu R Z, et al. Effect of oxygen lance position on the flow velocity of molten steel in BOF. J Univ Sci Technol Beijing, 2014, 36 (Suppl 1) :15 (李智崢, 朱榮, 劉潤藻, 等.轉爐氧槍槍位對煉鋼熔池流速的影響.北京科技大學學報, 2014, 36 (增刊1) :15)
    [8] Solórzano-López J, Zenit R, Ramírez-Argez M A. Mathematical and physical simulation of the interaction between a gas jet and a liquid free surface. Appl Math Modell, 2011, 35 (10) :4991
    [9] Lee M, Whitney V, Molloy N. Jet-liquid interaction in a steelmaking electric arc furnace. Scand J Metall, 2001, 30 (5) :330
    [10] Collins R D, Lubanska H. The depression of liquid surfaces by gas jets. Br J Appl Phys, 2002, 5 (1) :22
    [11] Nordquist A, Kumbhat N, Jonsson L, et al. The effect of nozzle diameter, lance height and flow rate on penetration depth in a Top-blown Water Model. Steel Res Int, 2006, 77 (2) :82
    [12] Alam M, Irons G, Brooks G, et al. Inclined jetting and splashing in electric arc furnace steelmaking. ISIJ Int, 2011, 51 (9) :1439
    [13] Mazumdar D, Guthrie R I L. The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int, 1995, 35 (1) :1
    [14] Bank R B, Chandrasekhara D V. Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface.J Fluid Mech, 1963, 15 (1) :13
    [15] Crowe C T, Elger D F, Williams B C, et al. Engineering Fluid Mechanics. 9th Ed. Hoboken:John Wiley&Sons, Inc, 2009
  • 加載中
計量
  • 文章訪問數:  13
  • HTML全文瀏覽量:  3
  • PDF下載量:  0
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-02-04
  • 網絡出版日期:  2023-07-18

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com