[1] |
Rahman M, Seah W K H, Teo T T. The machinability of Inconel718. J Mater Process Technol, 1997, 63 (1-3) :199
|
[2] |
Du J H, Lu X D, Deng Q, et al. Progress in the research and manufacture of GH4169 alloy. J Iron Steel Res Int, 2015, 22 (8) :657
|
[3] |
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy. Acta Metall Sin, 2016, 52 (10) :1259 (劉永長, 郭倩穎, 李沖, 等. Inconel 718高溫合金中析出相演變研究進展.金屬學報, 2016, 52 (10) :1259)
|
[4] |
Wang L H, Liu Z L, Liu X Q, et al. Effect of Al and Ti contents on the microstructure and solidification behavior of cast Inconel718. J Mater Sci Eng, 2016, 34 (2) :242 (王立紅, 劉子利, 劉希琴, 等. Al、Ti含量對Inconel 718合金鑄造組織和凝固行為的影響.材料科學與工程學報, 2016, 34 (2) :242)
|
[5] |
Xu Y L, Zhang L, Li J, et al. Relationship between Ti/Al ratio and stress-rupture properties in nickel-based superalloy. Mater Sci Eng A, 2012, 544:48
|
[6] |
Xie X S, Dong J X, Chen W, et al. Investigation on modified nickel-base superalloys with combined precipitation ofγ″andγ'.Trans Met Heat Treat, 1997, 18 (3) :37 (謝錫善, 董建新, 陳衛, 等.γ″和γ'復合析出強化新型鎳基高溫合金的研究.金屬熱處理學報, 1997, 18 (3) :37)
|
[7] |
Collier J P, Wong S H, Tien J K, et al. The effect of varying Al, Ti, and Nb content on the phase stability of Inconel 718. Metall Trans A, 1988, 19 (7) :1657
|
[8] |
Choudhury A. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR. ISIJ Int, 1992, 32 (5) :563
|
[9] |
Vaish A K, Iyer G V R, De P K, et al. Electroslag remelting-Its status, mechanism and refining aspects in the production of quality steels. J Metall Mater Sci, 2000, 42 (1) :11
|
[10] |
Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel. Steel Res Int, 2012, 83 (5) :472
|
[11] |
Reyes-Carmona F, Mitchell A. Deoxidation of ESR slags. ISIJ Int, 1992, 32 (4) :529
|
[12] |
Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans Iron Steel Inst Jpn, 1984, 24 (7) :547
|
[13] |
Wegman D D. Compositional control and oxide inclusion level comparison of pyrome@718 and A-286 ingots electroslag remelted under air vs argon atmosphere//Proceedings of the Sixth International Symposium on Superalloys Sponsored by the High Temperature Alloys Committee of the Metallurgical Society of AIME.Reading, 1988:427
|
[14] |
Shi C B, Chen X C, Guo H J, et al. Control of Mg O·Al2O3spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44 (2) :378
|
[15] |
Yan C, Li Y, Ma B Y, et al. Parameters optimising of the protective gas electroslag remelting. Mater Res Innovations, 2015, 19 (Suppl 1) :62
|
[16] |
Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50 (9) :41 (李星, 耿鑫, 姜周華, 等.電渣重熔高溫合金渣系對冶金質量的影響.鋼鐵, 2015, 50 (9) :41)
|
[17] |
Tommaney J W, Andolina P S, Buri R C. Method and Means of Reducing the Oxidization of Reactive Elements in an Electroslag Remelting Operation:US Patent, 4953177. 1990-8--28
|
[18] |
Li Z B. Electroslag Metallurgy Theory and Practice. Beijing:Metallurgical Industry Press, 2010 (李正邦.電渣冶金的理論與實踐.北京:冶金工業出版社, 2010)
|
[19] |
Melgaard D K, Williamson R L, Beaman J J. Controlling remelting processes for superalloys and aerospace Ti alloys. JOM, 1998, 50 (3) :13
|
[20] |
Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with slags Al2O3--CaO--CaF2in the ESR process. J Vac Sci Technol, 1972, 9 (6) :1318
|
[21] |
Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47 (2) :1465
|
[22] |
Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process:description and verification. ISIJ Int, 2017, 57 (4) :713
|
[23] |
Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel:Part-1 mass-transfer model. ISIJ Int, 2017, 57 (8) :1400
|
[24] |
Guo H J. Metallurgical Physical Chemistry. 2nd Ed. Beijing:Metallurgical Industry Press, 2013 (郭漢杰.冶金物理化學. 2版.北京:冶金工業出版社, 2013)
|
[25] |
Dashevskii V, Aleksandrov A, Kanevskii A, et al. Deoxidation equilibria of manganese, silicon, and aluminum in iron-nickelchromium melts. Metall Mater Trans B, 2016, 47 (3) :1839
|
[26] |
Miki T, Hino M. Numerical analysis on Si deoxidation of molten Fe, Ni, Fe--Ni, Fe--Cr, Fe--Cr--Ni, Ni--Cu and Ni-Co alloys by quadratic formalism. ISIJ Int, 2005, 45 (12) :1848
|
[27] |
Samuelsson E, Mitchell A. The thermochemistry of magnesium in nickel-base alloys:Part II. activity of magnesium. Metall Trans B, 1992, 23 (6) :805
|
[28] |
Zhang J. Computational Thermodynamics of Metallurgical Melts and Solutions. Beijing:Metallurgical Industry Press, 2007 (張鑒.冶金熔體和溶液的計算熱力學.北京:冶金工業出版社, 2007)
|
[29] |
Duan S C, Li C, Guo X L, et al. A thermodynamic model for calculating manganese distribution ratio between CaO-Si O2-Mg O--Fe O-MnO-Al2O3--Ti O2-CaF2ironmaking slags and carbon saturated hot metal based on the IMCT. Ironmak Steelmak, 2018, 45 (7) :655
|
[30] |
Duan S C, Guo X L, Guo H J, et al. A manganese distribution prediction model for CaO-SiO2-Fe O--Mg O--Mn O-Al2O3slags based on IMCT. Ironmak Steelmak, 2017, 44 (3) :168
|
[31] |
Guo H J. Activity query. Chin J Eng, 2017, 39 (4) :502 (郭漢杰.“活度”質疑.工程科學學報, 2017, 39 (4) :502)
|
[32] |
Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel:Part-2 control of titanium and aluminum content. ISIJ Int, 2017, 57 (8) :1410
|
[33] |
Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8 (1) :5232
|
[34] |
Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electro slag remelting (ESR) process. Metall Mater Trans B, 2017, 48 (4) :2147
|