<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Inconel 718高溫合金電渣重熔熱力學分析

段生朝 郭漢杰 石驍 郭靖 李彬 韓少偉 楊文晟

段生朝, 郭漢杰, 石驍, 郭靖, 李彬, 韓少偉, 楊文晟. Inconel 718高溫合金電渣重熔熱力學分析[J]. 工程科學學報, 2018, 40(S1): 53-64. doi: 10.13374/j.issn2095-9389.2018.s1.009
引用本文: 段生朝, 郭漢杰, 石驍, 郭靖, 李彬, 韓少偉, 楊文晟. Inconel 718高溫合金電渣重熔熱力學分析[J]. 工程科學學報, 2018, 40(S1): 53-64. doi: 10.13374/j.issn2095-9389.2018.s1.009
DUAN Sheng-chao, GUO Han-jie, SHI Xiao, GUO Jing, LI Bin, HAN Shao-wei, YANG Wen-sheng. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018, 40(S1): 53-64. doi: 10.13374/j.issn2095-9389.2018.s1.009
Citation: DUAN Sheng-chao, GUO Han-jie, SHI Xiao, GUO Jing, LI Bin, HAN Shao-wei, YANG Wen-sheng. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018, 40(S1): 53-64. doi: 10.13374/j.issn2095-9389.2018.s1.009

Inconel 718高溫合金電渣重熔熱力學分析

doi: 10.13374/j.issn2095-9389.2018.s1.009
基金項目: 

國家自然科學基金資助項目 (51274031)

國家自然科學基金聯合基金資助項目 (U1560203)

詳細信息
    通訊作者:

    郭漢杰, E-mail:guohanjie@ustb.edu.cn

  • 中圖分類號: TF14;TG132.3

Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process

  • 摘要: 基于離子-分子共存理論建立了計算電渣重熔Inconel 718高溫合金過程中平衡Al和Ti含量的熱力學模型.并討論了Ca O-Si O2-MgO-Fe O-Al2O3-Ti O2-Ca F2電渣重熔渣系成分變化時, 渣中各組元的活度、活度比值與爐渣成分的關系.與此同時, 研究了不同溫度條件下, 鎳基合金中平衡的Al和Ti含量與爐渣成分之間的關系.結果表明:冶煉溫度升高時, 合金中平衡的Al含量隨之升高, 而平衡Ti含量降低;渣中MgO和Ca F2只起到調整爐渣物理化學性質的作用, 對控制鎳基合金中Al和Ti元素燒損作用不大.

     

  • [1] Rahman M, Seah W K H, Teo T T. The machinability of Inconel718. J Mater Process Technol, 1997, 63 (1-3) :199
    [2] Du J H, Lu X D, Deng Q, et al. Progress in the research and manufacture of GH4169 alloy. J Iron Steel Res Int, 2015, 22 (8) :657
    [3] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy. Acta Metall Sin, 2016, 52 (10) :1259 (劉永長, 郭倩穎, 李沖, 等. Inconel 718高溫合金中析出相演變研究進展.金屬學報, 2016, 52 (10) :1259)
    [4] Wang L H, Liu Z L, Liu X Q, et al. Effect of Al and Ti contents on the microstructure and solidification behavior of cast Inconel718. J Mater Sci Eng, 2016, 34 (2) :242 (王立紅, 劉子利, 劉希琴, 等. Al、Ti含量對Inconel 718合金鑄造組織和凝固行為的影響.材料科學與工程學報, 2016, 34 (2) :242)
    [5] Xu Y L, Zhang L, Li J, et al. Relationship between Ti/Al ratio and stress-rupture properties in nickel-based superalloy. Mater Sci Eng A, 2012, 544:48
    [6] Xie X S, Dong J X, Chen W, et al. Investigation on modified nickel-base superalloys with combined precipitation ofγ″andγ'.Trans Met Heat Treat, 1997, 18 (3) :37 (謝錫善, 董建新, 陳衛, 等.γ″和γ'復合析出強化新型鎳基高溫合金的研究.金屬熱處理學報, 1997, 18 (3) :37)
    [7] Collier J P, Wong S H, Tien J K, et al. The effect of varying Al, Ti, and Nb content on the phase stability of Inconel 718. Metall Trans A, 1988, 19 (7) :1657
    [8] Choudhury A. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR. ISIJ Int, 1992, 32 (5) :563
    [9] Vaish A K, Iyer G V R, De P K, et al. Electroslag remelting-Its status, mechanism and refining aspects in the production of quality steels. J Metall Mater Sci, 2000, 42 (1) :11
    [10] Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel. Steel Res Int, 2012, 83 (5) :472
    [11] Reyes-Carmona F, Mitchell A. Deoxidation of ESR slags. ISIJ Int, 1992, 32 (4) :529
    [12] Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans Iron Steel Inst Jpn, 1984, 24 (7) :547
    [13] Wegman D D. Compositional control and oxide inclusion level comparison of pyrome@718 and A-286 ingots electroslag remelted under air vs argon atmosphere//Proceedings of the Sixth International Symposium on Superalloys Sponsored by the High Temperature Alloys Committee of the Metallurgical Society of AIME.Reading, 1988:427
    [14] Shi C B, Chen X C, Guo H J, et al. Control of Mg O·Al2O3spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44 (2) :378
    [15] Yan C, Li Y, Ma B Y, et al. Parameters optimising of the protective gas electroslag remelting. Mater Res Innovations, 2015, 19 (Suppl 1) :62
    [16] Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50 (9) :41 (李星, 耿鑫, 姜周華, 等.電渣重熔高溫合金渣系對冶金質量的影響.鋼鐵, 2015, 50 (9) :41)
    [17] Tommaney J W, Andolina P S, Buri R C. Method and Means of Reducing the Oxidization of Reactive Elements in an Electroslag Remelting Operation:US Patent, 4953177. 1990-8--28
    [18] Li Z B. Electroslag Metallurgy Theory and Practice. Beijing:Metallurgical Industry Press, 2010 (李正邦.電渣冶金的理論與實踐.北京:冶金工業出版社, 2010)
    [19] Melgaard D K, Williamson R L, Beaman J J. Controlling remelting processes for superalloys and aerospace Ti alloys. JOM, 1998, 50 (3) :13
    [20] Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with slags Al2O3--CaO--CaF2in the ESR process. J Vac Sci Technol, 1972, 9 (6) :1318
    [21] Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47 (2) :1465
    [22] Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process:description and verification. ISIJ Int, 2017, 57 (4) :713
    [23] Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel:Part-1 mass-transfer model. ISIJ Int, 2017, 57 (8) :1400
    [24] Guo H J. Metallurgical Physical Chemistry. 2nd Ed. Beijing:Metallurgical Industry Press, 2013 (郭漢杰.冶金物理化學. 2版.北京:冶金工業出版社, 2013)
    [25] Dashevskii V, Aleksandrov A, Kanevskii A, et al. Deoxidation equilibria of manganese, silicon, and aluminum in iron-nickelchromium melts. Metall Mater Trans B, 2016, 47 (3) :1839
    [26] Miki T, Hino M. Numerical analysis on Si deoxidation of molten Fe, Ni, Fe--Ni, Fe--Cr, Fe--Cr--Ni, Ni--Cu and Ni-Co alloys by quadratic formalism. ISIJ Int, 2005, 45 (12) :1848
    [27] Samuelsson E, Mitchell A. The thermochemistry of magnesium in nickel-base alloys:Part II. activity of magnesium. Metall Trans B, 1992, 23 (6) :805
    [28] Zhang J. Computational Thermodynamics of Metallurgical Melts and Solutions. Beijing:Metallurgical Industry Press, 2007 (張鑒.冶金熔體和溶液的計算熱力學.北京:冶金工業出版社, 2007)
    [29] Duan S C, Li C, Guo X L, et al. A thermodynamic model for calculating manganese distribution ratio between CaO-Si O2-Mg O--Fe O-MnO-Al2O3--Ti O2-CaF2ironmaking slags and carbon saturated hot metal based on the IMCT. Ironmak Steelmak, 2018, 45 (7) :655
    [30] Duan S C, Guo X L, Guo H J, et al. A manganese distribution prediction model for CaO-SiO2-Fe O--Mg O--Mn O-Al2O3slags based on IMCT. Ironmak Steelmak, 2017, 44 (3) :168
    [31] Guo H J. Activity query. Chin J Eng, 2017, 39 (4) :502 (郭漢杰.“活度”質疑.工程科學學報, 2017, 39 (4) :502)
    [32] Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel:Part-2 control of titanium and aluminum content. ISIJ Int, 2017, 57 (8) :1410
    [33] Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8 (1) :5232
    [34] Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electro slag remelting (ESR) process. Metall Mater Trans B, 2017, 48 (4) :2147
  • 加載中
計量
  • 文章訪問數:  11
  • HTML全文瀏覽量:  3
  • PDF下載量:  0
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-02-03
  • 網絡出版日期:  2023-07-18

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com