Effect of microalloying elements Ti and Nb on impact property of high-strength engineering structural steel
-
摘要: 通過對比國內某鋼廠兩種不同成分的Q345E性能發現, 添加微合金元素Nb和Ti后Q345E的屈服強度和抗拉強度升高, 低溫沖擊性能降低;利用熱力學計算軟件Thermo-Calc計算Nb-Ti鋼和C-Mn鋼的平衡態析出相發現, 二者主要區別在于Nb-Ti鋼多了 (Nb、Ti) (C、N) 析出相;同時設計三種不同含量Ti的高強試驗鋼, 進行沖擊試驗后在掃描電鏡下觀察斷口的微觀形貌以及第二相顆粒, 發現隨著Ti含量的增加, 試驗鋼低溫沖擊性能降低, 斷口處存在大量大顆粒第二相粒子聚集分布, 能譜分析為 (Nb、Ti) (C、N) , 導致沖擊功降低.這說明加Ti后會惡化低合金高強度鋼Q345E低溫沖擊性能, 因此需要配合控軋控冷與成分的設計, 控制第二相粒子的尺寸.
-
關鍵詞:
- 低合金高強度鋼 /
- 微合金化 /
- Thermo-Calc熱力學軟件 /
- (Nb、Ti)(C、N)析出相 /
- 低溫沖擊性能
Abstract: Comparing the properties of Q345E steels of two different components, it is found that the yield strength and tensile strength of Q345E increase with the additions of microalloying elements Nb and Ti, but the low-temperature impact performance reduces.The results of the equilibrium phase calculation of Nb-Ti steel and C-Mn steel using thermodynamic software Thermo-Calc reveal that the main difference between them is the precipitation of (Nb, Ti) (C, N) phase.Furthermore, three titanium containing high-strength test steels were designed to observe the microtopography of the fracture and the second-phase particles of steels after impact test under scanning electron microscopy.With the increase of Ti, the low-temperature impact performance of steels reduced, and a number of large particles were gathered in the fracture, which were found to be (Nb, Ti) (C, N) using energy dispersive spectrometer (EDS) analysis, resulting in reduced impact energy.The results indicate that Ti deteriorates the low-temperature impact performance of low-alloy high-strength steel Q345E;therefore, it is necessary to control the size of the second-phase particles using controlled rolling and cooling or component design.-
Key words:
- low-alloy high-strength steel /
- microalloying /
- thermodynamic software Thermo-Calc /
- (Nb /
- Ti) (C
-
參考文獻
[1] Qi J J, Li S J, Zhao C F. Effect of microalloy element on low-temperature toughness of Q345E steel bar. Hot Work Technol, 2009, 38 (10) :80 (齊建軍, 李紹杰, 趙春風.微合金元素對Q345E棒材低溫韌性的影響.熱加工工藝, 2009, 38 (10) :80) [2] Gao Z P. Approach to strengthening mechanism and production process of low-alloy high-strength steel. Hunan Metall, 2001 (1) :17 (高澤平.低合金高強度鋼的強化機理及生產工藝的探討.湖南冶金, 2001 (1) :17) [3] Suzuki K, Miyagawa S, Saito Y, et al. Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab. ISIJ Int, 1995, 35 (1) :34 [4] Wang Z Y, Wang C H. Cause analysis on disqualification of low temperature impact property of Q345E medium plate. Wide Heavy Plate, 2011, 17 (6) :16 (王智軼, 王彩虹. Q345E低溫沖擊不合分析.寬厚板, 2011, 17 (6) :16) [5] Yang X Y, Xu G, Yang J, et al. Strengthening mechanism of Ti-Ni composite micro-alloyed high strength steel. Hot Work Technol, 2013, 42 (10) :50 (楊雪瑩, 徐光, 楊靜, 等. Ti-Nb復合微合金化高強度鋼強化機理研究.熱加工工藝, 2013, 42 (10) :50) [6] Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel:competition between large grains and large particles. Mater Sci Eng A, 2013, 561:126 [7] Li Y L. Study on Composition Design and Microstructure Control about 700 MPa Grade High Strength Beam Steel for Vehicles[Dissertation]. Beijing:University of Science and Technology Beijing, 2016 (李永亮. 700 MPa級高強度汽車大梁鋼成分設計與組織控制研究[學位論文].北京:北京科技大學, 2016) -

計量
- 文章訪問數: 14
- HTML全文瀏覽量: 4
- PDF下載量: 0
- 被引次數: 0