Effect of aging on the microstructure and stress corrosion resistance of Al–Zn?Mg alloy
-
摘要: 采用慢應變速率拉伸應力腐蝕、室溫拉伸、透射電鏡等檢測方法,研究傳統T5、T73時效處理,以及新型T5I4、T5I6斷續時效處理對Al–Zn?Mg合金微觀組織、室溫拉伸性能及抗應力腐蝕性能的影響。結果表明:斷續時效T5I4處理后材料抗拉強度為400.0 MPa,明顯高于傳統T5及T73態樣品,但材料抗應力腐蝕性能變差,應力腐蝕敏感系數為5.7%;而經斷續時效T5I6處理后,材料的抗拉強度為408.5 MPa,較T5I4態相比有所提升,與此同時抗應力腐蝕性能也得到明顯改善,應力腐蝕敏感系數為3.2%,該值明顯小于T5I4及T5態;T5I4態晶內析出相平均粒徑為2.0 nm,體積分數為8.8%,均明顯小于其他3種時效制度,其晶界析出相為細小且連續分布的點狀析出相;而經T5I6時效處理后晶內析出相體積分數為24.6%,明顯大于其他3種時效制度,晶內析出相平均粒徑(4.1 nm)較T5I4態有所增大,但依然小于T5、T73態,其晶界處析出相與T5I4態相比更加粗大,呈斷續分布形貌。
-
關鍵詞:
- Al–Zn?Mg合金 /
- 斷續時效 /
- 抗應力腐蝕 /
- 微觀組織 /
- 室溫拉伸
Abstract: Controlling the balance between mechanical properties and stress corrosion resistance of Al–Zn?Mg alloys by aging tempers has long been an active focal point of research. Traditional peak-age can improve the mechanical properties, but the continuous precipitate at the grain boundary reduces the stress corrosion resistance of the alloy. While alloys in over-aged (T73) condition show good resistance to stress corrosion, their mechanical properties will drop significantly. In this paper, tensile properties, resistances to stress corrosion, and microstructures of the Al–Zn?Mg alloy, in interrupted aged (T5I4, T5I6) and traditional (T5, T73) tempers, were studied using a tensile test, a slow strain rate tensile test, and transmission electron microscopy. Results reveal that the tensile strength of T5I4 temper is 400.0 MPa, higher than that of T5,T73 tempers, while the stress corrosion resistance is clearly compromised, with index of slow strain rate testing, ISSRT, of 5.7%, significantly larger than that of the other three aging treatments. The tensile strength of the T5I6 temper increases to 408.5 MPa, and the stress corrosion resistance is also improved, to ISSRT=3.2%, significantly lower than that of T5 and T5I4 tempers. Volume fraction (8.8%) and average particle diameter (2.0 nm) of intragranular precipitates of T5I4 temper has the minimum value among the four aging treatments, and there are large numbers of fine precipitates distributed continuously at grain boundaries. In the T5I6 temper, the number of intragranular precipitates increase significantly, and the volume fraction of intragranular precipitates is 24.6%, larger than that of the other three aging treatments. In addition, the average particle diameter (4.1 nm) of the intragranular precipitates of the T5I6 temper is larger than that of the T5I4 temper, but is still smaller than that of the T5 and T73 tempers. Precipitates at the grain boundaries of the T5I6 temper are unevenly distributed, and significantly larger than those of the T5I4 temper.-
Key words:
- Al–Zn?Mg alloy /
- interrupted aging /
- stress corrosion resistance /
- microstructure /
- tensile property
-
表 1 實驗所用7020鋁合金化學成分(質量分數)
Table 1. Chemical composition of the investigated 7020 aluminum alloy
% Zn Mg Mn Cr Zr Cu Fe Si Ti Al 4.42 1.19 0.29 0.19 0.13 0.12 0.11 0.07 0.05 余量 表 2 實驗采用時效制度具體參數
Table 2. Specific parameters of aging treatment process of samples
時效制度 具體時效溫度及時長 T5 120 ℃/96 h T73 90 ℃/12 h+169 ℃/12 h T5I4 130 ℃/2 h+65 ℃/168 h T5I6 130 ℃/2 h+65 ℃/168 h+130 ℃/42 h 表 3 不同時效狀態下合金的室溫拉伸性能
Table 3. Tensile properties of different aged samples
時效狀態 Rm/MPa Rp0.2/MPa 屈強比/% 延伸率/% T5 391.6±2.0 343.5±0.5 87.7 12.2±0.5 T73 354.1±4.3 297.1±0.7 83.9 12.7±0.1 T5I4 400.0±3.7 272.1±3.1 68.0 17.1±0.8 T5I6 408.5±1.9 361.4±3.1 88.5 13.0±0.9 表 4 不同時效狀態下合金慢應變速率拉伸應力腐蝕性能
Table 4. Slow strain rate tensile properties of different aged samples
時效狀態 拉伸介質 斷裂時長/h 抗拉強度/MPa 延伸率/% T5 硅油 38.3±3.8 370.5±5.4 16.8±0.7 3.5% NaCl 35.1±2.4 363.9±4.1 14.8±0.4 T73 硅油 41.5±2.4 330.3±4.7 15.3±0.5 3.5% NaCl 40.5±0.3 322.9±5.9 14.6±0.2 T5I4 硅油 71.3±3.5 417.2±7.6 23.0±1.9 3.5% NaCl 67.5±2.8 401.0±8.6 20.7±0.2 T5I6 硅油 47.7±0.2 401.2±8.4 14.7±0.4 3.5% NaCl 43.5±0.9 390.8±7.5 14.0±0.5 表 5 不同時效態合金應力腐蝕敏感系數表
Table 5. Stress corrosion index of different aged samples
時效狀態 ISSRT/% T5 3.5±0.3 T73 2.8±0.5 T5I4 5.7±0.6 T5I6 3.2±0.2 表 6 不同時效狀態下合金晶內析出相平均粒徑及體積分數
Table 6. Average particle diameters and volume fractions of intragranular precipitates of the alloy in different ageing conditions
時效狀態 晶內析出相平均粒徑/nm 體積分數/% T5 5.6±0.2 21.9±1.4 T73 6.2±0.4 19.9±0.9 T5I4 2.0±0.1 8.8±1.1 T5I6 4.1±0.4 24.6±2.1 www.77susu.com -
參考文獻
[1] Qi H, Liu X Y, Liang S X, et al. Mechanical properties and corrosion resistance of Al?Cu?Mg?Ag heat-resistant alloy modified by interrupted aging. J Alloys Compd, 2016, 657: 318 doi: 10.1016/j.jallcom.2015.10.094 [2] Krishnan M A, Raja V S, Shukla S, et al. Mitigating intergranular stress corrosion cracking in age-hardenable Al–Zn?Mg–Cu alloys. Metall Mater Trans A, 2018, 49(6): 2487 doi: 10.1007/s11661-018-4601-8 [3] Lumley R N, Polmear I J, Morton A J. Temper developments using secondary ageing // Proceedings of the 9th International Conference on Aluminium Alloys (2004). Brisbane: Institute of Materials Engineering Australasia Ltd, 2004: 85 [4] Sharma M M, Amateau M F, Eden T J. Hardening mechanisms of spray formed Al–Zn–Mg–Cu alloys with scandium and other elemental additions. J Alloys Compd, 2006, 416(1-2): 135 doi: 10.1016/j.jallcom.2005.08.045 [5] Wang Y L, Jiang H C, Li Z M, et al. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al–Zn?Mg alloy. J Mater Sci Technol, 2018, 34(7): 1250 doi: 10.1016/j.jmst.2017.05.008 [6] Yang T, Ye L Y, Shan Z J, et al. Effect of pre-aging on microstructure and stress corrosion resistance of 7020 aluminum alloy. Chin J Nonferrous Met, 2016, 26(5): 947楊濤, 葉凌英, 單朝軍, 等. 預時效工藝對7020鋁合金顯微組織和應力腐蝕性能的影響. 中國有色金屬學報, 2016, 26(5):947 [7] Song F X, Zhang X M, Liu S D, et al. Effect of aging on corrosion resistance of 7050 aluminum alloy pre-stretching plate. Chin J Nonferrous Met, 2013, 23(3): 645宋豐軒, 張新明, 劉勝膽, 等. 時效對7050鋁合金預拉伸板抗腐蝕性能的影響. 中國有色金屬學報, 2013, 23(3):645 [8] Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050. Mater Sci Eng A, 2011, 528(10-11): 3714 doi: 10.1016/j.msea.2011.01.068 [9] Liu J H, Li D, Guo B L. Investigation of stress corrosion cracking of 7xxx series aluminum alloys. Corros Sci Prot Technol, 2001, 13(4): 218 doi: 10.3969/j.issn.1002-6495.2001.04.009劉繼華, 李荻, 郭寶蘭. 7xxx系列Al合金應力腐蝕開裂的研究. 腐蝕科學與防護技術, 2001, 13(4):218 doi: 10.3969/j.issn.1002-6495.2001.04.009 [10] Lumley R N, Polmear I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al?Cu?Mg?Ag alloy. Scripta Mater, 2004, 50(9): 1227 doi: 10.1016/j.scriptamat.2004.02.001 [11] Wang Z F, Liu X Y, Zhang R J, et al. Effects of interrupted aging on corrosion resistance of Al?Cu?Mg?Ag new heat-resistant Al alloy. J Cent South Univ Sci Technol, 2017, 48(7): 1726王志發, 劉曉艷, 張瑞杰, 等. 斷續時效對Al?Cu?Mg?Ag新型耐熱鋁合金抗腐蝕性能的影響. 中南大學學報: 自然科學版, 2017, 48(7):1726 [12] Chen Y Q, Song W W, Pan S P, et al. Influence of T6I4 and T6I6 aging treatments on fatigue properties of 7050 Al alloy. J Cent South Univ Sci Technol, 2016, 47(10): 3332陳宇強, 宋文煒, 潘素平, 等. T6I4和T6I6時效處理對7050鋁合金疲勞性能的影響. 中南大學學報: 自然科學版, 2016, 47(10):3332 [13] Han N M, Zhang X M, Liu S D, et al. Effects of interrupt aging on strength and fracture toughness of 7050 aluminum alloy. J Cent South Univ Sci Technol, 2012, 43(9): 3363韓念梅, 張新明, 劉勝膽, 等. 斷續時效對7050鋁合金強度和斷裂韌性的影響. 中南大學學報: 自然科學版, 2012, 43(9):3363 [14] Wu P Q. The Effect of Heat Treatment on the Properties of 7N01 Aluminum Alloys [Dissertation]. Changsha: Central South University, 2014鄔沛卿. 熱處理制度對7N01鋁合金性能的影響[學位論文]. 長沙: 中南大學, 2014 [15] Rout P K, Ghosh M M, Ghosh K S. Effect of interrupted ageing on stress corrosion cracking (SCC) behaviour of an Al–Zn?Mg?Cu alloy. Procedia Mater Sci, 2014, 5: 1214 doi: 10.1016/j.mspro.2014.07.427 [16] Waterloo G, Hansen V, Gj?nnes J, et al. Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu, Zr) alloys. Mater Sci Eng A, 2001, 303(1-2): 226 doi: 10.1016/S0921-5093(00)01883-9 [17] Xia H W. Effects of Solution Process and Interrupted Aging on Microstructures and Mechanical Properties of 7150 Aluminum Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2016夏泓瑋. 固溶工藝和斷續時效對7150鋁合金組織和力學性能的影響[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016 [18] Li B, Wang X M, Chen H, et al. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy. J Alloys Compd, 2016, 678: 160 doi: 10.1016/j.jallcom.2016.03.228 [19] Chen X M, Song R G. Progress in research on stress corrosion cracking of 7000 series aluminum alloys. Corros Sci Prot Technol, 2010, 22(2): 120陳小明, 宋仁國. 7000系鋁合金應力腐蝕開裂的研究進展. 腐蝕科學與防護技術, 2010, 22(2):120 [20] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behavior of an Al?Zn?Mg alloy. Corros Sci, 2012, 65: 288 doi: 10.1016/j.corsci.2012.08.024 [21] Zhuang J J, Zhang X Y, Sun B, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chin J Eng, 2017, 39(10): 1532莊俊杰, 張曉燕, 孫斌, 宋仁國, 李海. 微弧氧化對7050鋁合金腐蝕行為的影響. 工程科學學報, 2017, 39(10):1532 [22] Lin L, Zheng Z Q, Li J F. Effect of aging treatments on the mechanical properties and corrosion behavior of 6156 aluminum alloy. Rare Met Mater Eng, 2012, 41(6): 1004 doi: 10.3969/j.issn.1002-185X.2012.06.013林莉, 鄭子樵, 李勁風. 時效制度對6156鋁合金力學性能及腐蝕性能的影響. 稀有金屬材料與工程, 2012, 41(6):1004 doi: 10.3969/j.issn.1002-185X.2012.06.013 -