<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

時效制度對Al–Zn?Mg合金組織和抗應力腐蝕性能的影響

葉凌英 楊汶卿 唐建國 劉勝膽 鄧運來 張新明

葉凌英, 楊汶卿, 唐建國, 劉勝膽, 鄧運來, 張新明. 時效制度對Al–Zn?Mg合金組織和抗應力腐蝕性能的影響[J]. 工程科學學報, 2019, 41(12): 1575-1582. doi: 10.13374/j.issn2095-9389.2018.12.28.005
引用本文: 葉凌英, 楊汶卿, 唐建國, 劉勝膽, 鄧運來, 張新明. 時效制度對Al–Zn?Mg合金組織和抗應力腐蝕性能的影響[J]. 工程科學學報, 2019, 41(12): 1575-1582. doi: 10.13374/j.issn2095-9389.2018.12.28.005
YE Ling-ying, YANG Wen-qing, TANG Jian-guo, LIU Sheng-dan, DENG Yun-lai, ZHANG Xin-ming. Effect of aging on the microstructure and stress corrosion resistance of Al–Zn?Mg alloy[J]. Chinese Journal of Engineering, 2019, 41(12): 1575-1582. doi: 10.13374/j.issn2095-9389.2018.12.28.005
Citation: YE Ling-ying, YANG Wen-qing, TANG Jian-guo, LIU Sheng-dan, DENG Yun-lai, ZHANG Xin-ming. Effect of aging on the microstructure and stress corrosion resistance of Al–Zn?Mg alloy[J]. Chinese Journal of Engineering, 2019, 41(12): 1575-1582. doi: 10.13374/j.issn2095-9389.2018.12.28.005

時效制度對Al–Zn?Mg合金組織和抗應力腐蝕性能的影響

doi: 10.13374/j.issn2095-9389.2018.12.28.005
基金項目: 國家重點基礎研究發展規劃資助項目(2016YFB0300901)
詳細信息
    通訊作者:

    E-mail:jgtang@csu.edu.cn

  • 中圖分類號: TG146.2

Effect of aging on the microstructure and stress corrosion resistance of Al–Zn?Mg alloy

More Information
  • 摘要: 采用慢應變速率拉伸應力腐蝕、室溫拉伸、透射電鏡等檢測方法,研究傳統T5、T73時效處理,以及新型T5I4、T5I6斷續時效處理對Al–Zn?Mg合金微觀組織、室溫拉伸性能及抗應力腐蝕性能的影響。結果表明:斷續時效T5I4處理后材料抗拉強度為400.0 MPa,明顯高于傳統T5及T73態樣品,但材料抗應力腐蝕性能變差,應力腐蝕敏感系數為5.7%;而經斷續時效T5I6處理后,材料的抗拉強度為408.5 MPa,較T5I4態相比有所提升,與此同時抗應力腐蝕性能也得到明顯改善,應力腐蝕敏感系數為3.2%,該值明顯小于T5I4及T5態;T5I4態晶內析出相平均粒徑為2.0 nm,體積分數為8.8%,均明顯小于其他3種時效制度,其晶界析出相為細小且連續分布的點狀析出相;而經T5I6時效處理后晶內析出相體積分數為24.6%,明顯大于其他3種時效制度,晶內析出相平均粒徑(4.1 nm)較T5I4態有所增大,但依然小于T5、T73態,其晶界處析出相與T5I4態相比更加粗大,呈斷續分布形貌。

     

  • 圖  1  不同時效態合金晶內析出相透射電鏡圖片及選區電子衍射花樣。(a)T5態;(b)T73態;(c)T5I4態;(d)T5I6態

    Figure  1.  TEM micrographs and corresponding SAED patterns of intragranular precipitates of the alloy in different ageing conditions:(a)T5;(b)T73;(c)T5I4;(d)T5I6

    圖  2  不同時效制度下7020鋁合金晶內析出相粒徑分布圖.(a) T5態;(b) T73態;(c) T5I4態;(d) T5I6態

    Figure  2.  Diameter distribution of intragranular precipitates of 7020 aluminum alloy under different aging treatments:(a) T5;(b) T73;(c) T5I4;(d) T5I6

    圖  3  不同時效制度下7020鋁合金晶界處TEM圖。(a) T5態;(b) T73態;(c) T5I4態;(d) T5I6態

    Figure  3.  TEM images of grain boundaries of 7020 aluminum alloy under different ageing treatments:(a) T5;(b) T73;(c) T5I4;(d) T5I6

    表  1  實驗所用7020鋁合金化學成分(質量分數)

    Table  1.   Chemical composition of the investigated 7020 aluminum alloy %

    ZnMgMnCrZrCuFeSiTiAl
    4.421.190.290.190.130.120.110.070.05余量
    下載: 導出CSV

    表  2  實驗采用時效制度具體參數

    Table  2.   Specific parameters of aging treatment process of samples

    時效制度具體時效溫度及時長
    T5120 ℃/96 h
    T7390 ℃/12 h+169 ℃/12 h
    T5I4130 ℃/2 h+65 ℃/168 h
    T5I6130 ℃/2 h+65 ℃/168 h+130 ℃/42 h
    下載: 導出CSV

    表  3  不同時效狀態下合金的室溫拉伸性能

    Table  3.   Tensile properties of different aged samples

    時效狀態Rm/MPaRp0.2/MPa屈強比/%延伸率/%
    T5391.6±2.0343.5±0.587.712.2±0.5
    T73354.1±4.3297.1±0.783.912.7±0.1
    T5I4400.0±3.7272.1±3.168.017.1±0.8
    T5I6408.5±1.9361.4±3.188.513.0±0.9
    下載: 導出CSV

    表  4  不同時效狀態下合金慢應變速率拉伸應力腐蝕性能

    Table  4.   Slow strain rate tensile properties of different aged samples

    時效狀態拉伸介質斷裂時長/h抗拉強度/MPa延伸率/%
    T5硅油38.3±3.8370.5±5.416.8±0.7
    3.5% NaCl35.1±2.4363.9±4.114.8±0.4
    T73硅油41.5±2.4330.3±4.715.3±0.5
    3.5% NaCl40.5±0.3322.9±5.914.6±0.2
    T5I4硅油71.3±3.5417.2±7.623.0±1.9
    3.5% NaCl67.5±2.8401.0±8.620.7±0.2
    T5I6硅油47.7±0.2401.2±8.414.7±0.4
    3.5% NaCl43.5±0.9390.8±7.514.0±0.5
    下載: 導出CSV

    表  5  不同時效態合金應力腐蝕敏感系數表

    Table  5.   Stress corrosion index of different aged samples

    時效狀態ISSRT/%
    T53.5±0.3
    T732.8±0.5
    T5I45.7±0.6
    T5I63.2±0.2
    下載: 導出CSV

    表  6  不同時效狀態下合金晶內析出相平均粒徑及體積分數

    Table  6.   Average particle diameters and volume fractions of intragranular precipitates of the alloy in different ageing conditions

    時效狀態晶內析出相平均粒徑/nm體積分數/%
    T55.6±0.221.9±1.4
    T736.2±0.419.9±0.9
    T5I42.0±0.18.8±1.1
    T5I64.1±0.424.6±2.1
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qi H, Liu X Y, Liang S X, et al. Mechanical properties and corrosion resistance of Al?Cu?Mg?Ag heat-resistant alloy modified by interrupted aging. J Alloys Compd, 2016, 657: 318 doi: 10.1016/j.jallcom.2015.10.094
    [2] Krishnan M A, Raja V S, Shukla S, et al. Mitigating intergranular stress corrosion cracking in age-hardenable Al–Zn?Mg–Cu alloys. Metall Mater Trans A, 2018, 49(6): 2487 doi: 10.1007/s11661-018-4601-8
    [3] Lumley R N, Polmear I J, Morton A J. Temper developments using secondary ageing // Proceedings of the 9th International Conference on Aluminium Alloys (2004). Brisbane: Institute of Materials Engineering Australasia Ltd, 2004: 85
    [4] Sharma M M, Amateau M F, Eden T J. Hardening mechanisms of spray formed Al–Zn–Mg–Cu alloys with scandium and other elemental additions. J Alloys Compd, 2006, 416(1-2): 135 doi: 10.1016/j.jallcom.2005.08.045
    [5] Wang Y L, Jiang H C, Li Z M, et al. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al–Zn?Mg alloy. J Mater Sci Technol, 2018, 34(7): 1250 doi: 10.1016/j.jmst.2017.05.008
    [6] Yang T, Ye L Y, Shan Z J, et al. Effect of pre-aging on microstructure and stress corrosion resistance of 7020 aluminum alloy. Chin J Nonferrous Met, 2016, 26(5): 947

    楊濤, 葉凌英, 單朝軍, 等. 預時效工藝對7020鋁合金顯微組織和應力腐蝕性能的影響. 中國有色金屬學報, 2016, 26(5):947
    [7] Song F X, Zhang X M, Liu S D, et al. Effect of aging on corrosion resistance of 7050 aluminum alloy pre-stretching plate. Chin J Nonferrous Met, 2013, 23(3): 645

    宋豐軒, 張新明, 劉勝膽, 等. 時效對7050鋁合金預拉伸板抗腐蝕性能的影響. 中國有色金屬學報, 2013, 23(3):645
    [8] Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050. Mater Sci Eng A, 2011, 528(10-11): 3714 doi: 10.1016/j.msea.2011.01.068
    [9] Liu J H, Li D, Guo B L. Investigation of stress corrosion cracking of 7xxx series aluminum alloys. Corros Sci Prot Technol, 2001, 13(4): 218 doi: 10.3969/j.issn.1002-6495.2001.04.009

    劉繼華, 李荻, 郭寶蘭. 7xxx系列Al合金應力腐蝕開裂的研究. 腐蝕科學與防護技術, 2001, 13(4):218 doi: 10.3969/j.issn.1002-6495.2001.04.009
    [10] Lumley R N, Polmear I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al?Cu?Mg?Ag alloy. Scripta Mater, 2004, 50(9): 1227 doi: 10.1016/j.scriptamat.2004.02.001
    [11] Wang Z F, Liu X Y, Zhang R J, et al. Effects of interrupted aging on corrosion resistance of Al?Cu?Mg?Ag new heat-resistant Al alloy. J Cent South Univ Sci Technol, 2017, 48(7): 1726

    王志發, 劉曉艷, 張瑞杰, 等. 斷續時效對Al?Cu?Mg?Ag新型耐熱鋁合金抗腐蝕性能的影響. 中南大學學報: 自然科學版, 2017, 48(7):1726
    [12] Chen Y Q, Song W W, Pan S P, et al. Influence of T6I4 and T6I6 aging treatments on fatigue properties of 7050 Al alloy. J Cent South Univ Sci Technol, 2016, 47(10): 3332

    陳宇強, 宋文煒, 潘素平, 等. T6I4和T6I6時效處理對7050鋁合金疲勞性能的影響. 中南大學學報: 自然科學版, 2016, 47(10):3332
    [13] Han N M, Zhang X M, Liu S D, et al. Effects of interrupt aging on strength and fracture toughness of 7050 aluminum alloy. J Cent South Univ Sci Technol, 2012, 43(9): 3363

    韓念梅, 張新明, 劉勝膽, 等. 斷續時效對7050鋁合金強度和斷裂韌性的影響. 中南大學學報: 自然科學版, 2012, 43(9):3363
    [14] Wu P Q. The Effect of Heat Treatment on the Properties of 7N01 Aluminum Alloys [Dissertation]. Changsha: Central South University, 2014

    鄔沛卿. 熱處理制度對7N01鋁合金性能的影響[學位論文]. 長沙: 中南大學, 2014
    [15] Rout P K, Ghosh M M, Ghosh K S. Effect of interrupted ageing on stress corrosion cracking (SCC) behaviour of an Al–Zn?Mg?Cu alloy. Procedia Mater Sci, 2014, 5: 1214 doi: 10.1016/j.mspro.2014.07.427
    [16] Waterloo G, Hansen V, Gj?nnes J, et al. Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu, Zr) alloys. Mater Sci Eng A, 2001, 303(1-2): 226 doi: 10.1016/S0921-5093(00)01883-9
    [17] Xia H W. Effects of Solution Process and Interrupted Aging on Microstructures and Mechanical Properties of 7150 Aluminum Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2016

    夏泓瑋. 固溶工藝和斷續時效對7150鋁合金組織和力學性能的影響[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016
    [18] Li B, Wang X M, Chen H, et al. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy. J Alloys Compd, 2016, 678: 160 doi: 10.1016/j.jallcom.2016.03.228
    [19] Chen X M, Song R G. Progress in research on stress corrosion cracking of 7000 series aluminum alloys. Corros Sci Prot Technol, 2010, 22(2): 120

    陳小明, 宋仁國. 7000系鋁合金應力腐蝕開裂的研究進展. 腐蝕科學與防護技術, 2010, 22(2):120
    [20] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behavior of an Al?Zn?Mg alloy. Corros Sci, 2012, 65: 288 doi: 10.1016/j.corsci.2012.08.024
    [21] Zhuang J J, Zhang X Y, Sun B, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chin J Eng, 2017, 39(10): 1532

    莊俊杰, 張曉燕, 孫斌, 宋仁國, 李海. 微弧氧化對7050鋁合金腐蝕行為的影響. 工程科學學報, 2017, 39(10):1532
    [22] Lin L, Zheng Z Q, Li J F. Effect of aging treatments on the mechanical properties and corrosion behavior of 6156 aluminum alloy. Rare Met Mater Eng, 2012, 41(6): 1004 doi: 10.3969/j.issn.1002-185X.2012.06.013

    林莉, 鄭子樵, 李勁風. 時效制度對6156鋁合金力學性能及腐蝕性能的影響. 稀有金屬材料與工程, 2012, 41(6):1004 doi: 10.3969/j.issn.1002-185X.2012.06.013
  • 加載中
圖(3) / 表(6)
計量
  • 文章訪問數:  1309
  • HTML全文瀏覽量:  861
  • PDF下載量:  50
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-12-27
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回