<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

202不銹鋼中非金屬夾雜物的形成機理

李璟宇 成國光 李六一 胡斌 徐昌松 王貴民

李璟宇, 成國光, 李六一, 胡斌, 徐昌松, 王貴民. 202不銹鋼中非金屬夾雜物的形成機理[J]. 工程科學學報, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004
引用本文: 李璟宇, 成國光, 李六一, 胡斌, 徐昌松, 王貴民. 202不銹鋼中非金屬夾雜物的形成機理[J]. 工程科學學報, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004
LI Jing-yu, CHENG Guo-guang, LI Liu-yi, HU Bin, XU Chang-song, WANG Gui-min. Formation mechanism of non-metallic inclusions in 202 stainless steel[J]. Chinese Journal of Engineering, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004
Citation: LI Jing-yu, CHENG Guo-guang, LI Liu-yi, HU Bin, XU Chang-song, WANG Gui-min. Formation mechanism of non-metallic inclusions in 202 stainless steel[J]. Chinese Journal of Engineering, 2019, 41(12): 1567-1574. doi: 10.13374/j.issn2095-9389.2018.12.18.004

202不銹鋼中非金屬夾雜物的形成機理

doi: 10.13374/j.issn2095-9389.2018.12.18.004
基金項目: 國家自然科學基金資助項目(51374020);鋼鐵冶金新技術國家重點實驗室資助項目(41618007)
詳細信息
    通訊作者:

    E-mail:chengguoguang@metall.ustb.edu.cn

  • 中圖分類號: TF764.1

Formation mechanism of non-metallic inclusions in 202 stainless steel

More Information
  • 摘要: 通過工業試驗對202不銹鋼進行系統取樣,分析試樣中夾雜物的變化特征,結合熱力學計算,研究了202不銹鋼中非金屬夾雜物的形成機理。在進行硅錳脫氧后,LF精煉過程中鋼液內以球型Ca?Si?Mn?O夾雜物為主。對于硅錳脫氧鋼,鋼液中殘余鋁質量分數為1×10?5時,可以擴大Mn?Si?O相圖的液相區,但鋁質量分數超過3×10?5會導致鋼中容易形成氧化鋁夾雜物并減小液相區。在連鑄坯中以Mn?Al?O類夾雜物為主,相較于LF精煉過程試樣,連鑄坯試樣中夾雜物的MnO和Al2O3含量明顯增加,CaO和SiO2含量明顯減小,夾雜物個數則由LF出鋼試樣的5.5 mm?2增加到11.3 mm?2。結合熱力學計算發現,凝固過程中會有Mn?Al?O夾雜物形成,這也使其成為連鑄坯中主要的夾雜物類型。

     

  • 圖  1  202不銹鋼冶煉工藝及取樣示意圖

    Figure  1.  Schematic illustration of sampling locations

    圖  2  202不銹鋼試樣中典型夾雜物形貌. (a) 試樣1;(b) 試樣2;(c) 試樣3

    Figure  2.  Morphology of inclusions in steel samples: (a) sample 1; (b) sample 2; (c) sample 3

    圖  3  202不銹鋼試樣中典型夾雜物成分分布情況. (a) 試樣1;(b) 試樣2;(c) 試樣3

    Figure  3.  Distribution of main elements in inclusions: (a) sample 1; (b) sample 2; (c) sample 3

    圖  4  夾雜物在CaO?SiO2?MnO相圖中的分布情況

    Figure  4.  Composition distributions (mass fraction) of inclusions in CaO?SiO2?MnO phase diagrams. Solid lines represent the boundary line of different phases at 1873 K

    圖  5  夾雜物在Al2O3?SiO2?MnO相圖中的分布情況

    Figure  5.  Composition distributions (mass fraction) of inclusions in Al2O3?SiO2?MnO phase diagrams. Solid lines represent the boundary line of different phases at 1873 K

    圖  6  試樣中不同尺寸夾雜物數量分布

    Figure  6.  Size distribution of inclusions in all samples

    圖  7  不同尺寸夾雜物中各氧化物質量比例. (a) 試樣1;(b) 試樣2;(c) 試樣3

    Figure  7.  Mass ratio of main compositions in inclusions of different sizes: (a) sample 1; (b) sample 2; (c) sample 3

    圖  8  1600 ℃202不銹鋼Si?Mn?O平衡相圖

    Figure  8.  Phase diagram of the Si?Mn?O system with iso-oxygen contours in Fe?15Cr?4Ni steel at 1600 ℃

    圖  9  1600 ℃不同鋁含量202不銹鋼Si?Mn?O平衡相圖. (a) Fe?15Cr?4Ni?0.001Al鋼液;(b) Fe?15Cr?4Ni?0.003Al鋼液

    Figure  9.  Phase diagram of the Si?Mn?O system with iso-oxygen contours: (a) Fe?15Cr?4Ni?0.001Al steel; (b) Fe?15Cr?4Ni?0.003Al steel at 1600 ℃

    圖  10  202不銹鋼平衡析出相圖. (a) 1×10?5 Al; (b) 3×10?5 Al; (c) 6×10?5 Al; (d) 1×10?4 Al

    Figure  10.  Equilibrium precipitation of inclusions during continuous casting of sample 3 with different Al contents: (a) 1×10?5 Al; (b) 3×10?5 Al; (c) 6×10?5 Al; (d) 1×10?4 Al

    表  1  202不銹鋼主要成分

    Table  1.   Chemical composition of 202 stainless steel

    試樣號取樣位置質量分數/%
    CSiMnSCrNiAlO
    1#LF進站0.0360.507.340.011014.773.950.00040.0029
    2#LF出站0.0360.497.400.009515.033.970.00050.0024
    3#連鑄坯0.0410.457.310.003314.733.980.00090.0022
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Todoroki H, Inada S. Recent innovation and prospect in production technology of specialty steels with high cleanliness. Bull Iron Steel Inst Jpn, 2003, 8(8): 575
    [2] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
    [3] Li J Y, Cheng G G, Qian G Y, et al. Line defect on surface of hot (cold)-rolled 304 stainless steel sheet. China Metall, 2017, 27(1): 29

    李璟宇, 成國光, 錢國余, 等. 304不銹鋼熱(冷)軋板表面線缺陷. 中國冶金, 2017, 27(1):29
    [4] Chen S H, Jiang M, He X F, et al. Top slag refining for inclusion composition transform control in tire cord steel. Int J Miner Metall Mater, 2012, 19(6): 490 doi: 10.1007/s12613-012-0585-3
    [5] Cheng L M, Zhang L F, Shen P. Interfacial phenomena in ironmaking and steelmaking. Chin J Eng, 2018, 40(10): 1139

    程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面現象. 工程科學學報, 2018, 40(10):1139
    [6] Thapliyal V, Kumar A, Robertson D, et al. Inclusion modification in Si–Mn killed steels using titanium addition. ISIJ Int, 2015, 55(1): 190 doi: 10.2355/isijinternational.55.190
    [7] Park J H, Kang Y B. Effect of ferrosilicon addition on the composition of inclusions in 16Cr?14Ni?Si stainless steel melts. Metall Mater Trans B, 2006, 37(5): 791 doi: 10.1007/s11663-006-0061-4
    [8] Mizuno K, Todoroki H, Noda M, et al. Effects of Al and Ca in ferrosilicon alloys for deoxidation on inclusion composition in type 304 stainless steel. Iron Steelmaker, 2001, 28(8): 93
    [9] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of non-metallic inclusion of spinel (MgO·Al2O3) in liquid steel. Tetsu-to-Hagané, 1998, 84(2): 85 doi: 10.2355/tetsutohagane1955.84.2_85
    [10] Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness. ISIJ Int, 2003, 43(3): 271 doi: 10.2355/isijinternational.43.271
    [11] Rackers K G, Thomas B G. Clogging in continuous casting nozzles // 78th Steelmaking Conference Proceedings. Nashville, 1995: 723
    [12] Ye G Z, J?nsson P, Lund T. Thermodynamics and kinetics of the modification of Al2O3 inclusions. ISIJ Int, 1996, 36(Suppl): S105 doi: 10.2355/isijinternational.36.Suppl_S105
    [13] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5
    [14] Park J H, Lee S B, Kim D S. Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment. Metall Mater Trans B, 2005, 36(1): 67 doi: 10.1007/s11663-005-0007-2
    [15] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of oxide inclusions in titanium-stabilized AISI 443 stainless steel. Metall Mater Trans B, 2018, 49(5): 2357 doi: 10.1007/s11663-018-1331-7
    [16] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of inclusions in Al-killed, Ti-bearing 11Cr stainless steel with Ca treatment. ISIJ Int, 2018, 58(6): 1042 doi: 10.2355/isijinternational.ISIJINT-2017-565
    [17] Wang X Y, Qiu S T, Zou Z S, et al. Study on steel deoxidation with Al?Ca compound alloy. Chin J Eng, 2017, 39(5): 702

    王曉英, 仇圣桃, 鄒宗樹, 等. Al?Ca復合合金鋼水脫氧機理的研究. 工程科學學報, 2017, 39(5):702
    [18] Goto H, Miyazawa K I, Yamada W, et al. Effect of cooling rate on composition of oxides precipitated during solidification of steels. ISIJ Int, 1995, 35(6): 708 doi: 10.2355/isijinternational.35.708
    [19] Nurmi S, Louhenkilpi S, Holappa L. Thermodynamic evaluation of inclusions formation and behaviour in steels during casting and solidification. Steel Res Int, 2009, 80(6): 436
    [20] Choi J Y, Kim S K, Kang Y B, et al. Compositional evolution of oxide inclusions in austenitic stainless steel during continuous casting. Steel Res Int, 2015, 86(3): 284 doi: 10.1002/srin.201300486
    [21] Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3?MgO inclusions in aluminum killed ferritic stainless steel. ISIJ Int, 2000, 40(2): 121 doi: 10.2355/isijinternational.40.121
    [22] Park J H, Kim D S. Effect of CaO?Al2O3?MgO slags on the formation of MgO?Al2O3 inclusions in ferritic stainless steel. Metall Mater Trans B, 2005, 36(4): 495 doi: 10.1007/s11663-005-0041-0
    [23] Park J H. Thermodynamic investigation on the formation of inclusions containing MgAl2O4 spinel during 16Cr-14Ni austenitic stainless steel manufacturing processes. Mater Sci Eng A, 2008, 472(1-2): 43 doi: 10.1016/j.msea.2007.03.011
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  1341
  • HTML全文瀏覽量:  707
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-12-18
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回