<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

仿鴻雁編隊的無人機集群飛行驗證

楊慶 段海濱

楊慶, 段海濱. 仿鴻雁編隊的無人機集群飛行驗證[J]. 工程科學學報, 2019, 41(12): 1599-1608. doi: 10.13374/j.issn2095-9389.2018.12.18.001
引用本文: 楊慶, 段海濱. 仿鴻雁編隊的無人機集群飛行驗證[J]. 工程科學學報, 2019, 41(12): 1599-1608. doi: 10.13374/j.issn2095-9389.2018.12.18.001
YANG Qing, DUAN Hai-bin. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599-1608. doi: 10.13374/j.issn2095-9389.2018.12.18.001
Citation: YANG Qing, DUAN Hai-bin. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599-1608. doi: 10.13374/j.issn2095-9389.2018.12.18.001

仿鴻雁編隊的無人機集群飛行驗證

doi: 10.13374/j.issn2095-9389.2018.12.18.001
基金項目: 國家自然科學基金資助項目(91948204,91648205,61425008)
詳細信息
    通訊作者:

    E-mail:hbduan@buaa.edu.cn

  • 中圖分類號: V279

Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides

More Information
  • 摘要: 為了降低無人機集群控制的復雜度,高效解決大規模無人機集群控制和長距離飛行時集群變拓撲問題,設計了一種仿鴻雁群編隊的無人機集群自主協同控制方法,借鑒自然界中的鴻雁編隊行為機制,開發了面向無人機平臺的分布式仿生集群控制系統。鴻雁是一種常見的集群鳥類,其在遷徙途中表現的自組網和編隊變拓撲行為與無人機集群飛行有極高的相似性。仿鴻雁編隊行為機制的無人機集群飛行驗證系統采用了低成本四旋翼無人機,利用無線局域網進行組網通信。外場飛行試驗結果表明,自然界中的鴻雁編隊行為機制有助于無人機集群的快速精準編隊控制,實現了無人機的位置實時變拓撲,提高了無人機集群飛行的魯棒性。

     

  • 圖  1  自然界中的鴻雁(圖片來自天文論壇,作者rochefort 2013)

    Figure  1.  Anser cygnoides in nature (The image is from rochefort 2013 in bbs.imufu.cn)

    圖  2  鴻雁編隊

    Figure  2.  Formation of Anser cygnoides

    圖  3  無人機集群算法流程

    Figure  3.  Algorithm process of UAV formation

    圖  4  仿鴻雁群無人機集群變拓撲加速模式

    Figure  4.  Accelerating mode of UAV swarm formation and changing topological structures based on behavior mechanism of Anser cygnoides

    圖  5  仿鴻雁群無人機集群編隊與變拓撲仿真結果. (a) 迭代次數為1999; (b) 迭代次數為2005; (c) 迭代次數為2300; (d) 迭代次數為2500

    Figure  5.  Simulation results of UAV swarm formation and changing topological structures based on behavior mechanism of Anser cygnoides: (a) iterations is 1999; (b) iterations is 2005; (c) iterations is 2300; (d) iterations is 2500

    圖  6  無人機集群總體架構

    Figure  6.  Architecture of UAV formation

    圖  7  無人機編隊軌跡. (a) 進入加速模式前(二維); (b) 進入加速模式后(二維); (c) 進入加速模式前(三維); (d) 進入加速模式后(三維)

    Figure  7.  Path of UAV formation: (a) before acceleration mode (2D); (b) after acceleration mode (2D); (c) before acceleration mode (3D); (d) after acceleration mode (3D)

    圖  8  無人機的速度. (a) 無人機1; (b) 無人機2; (c) 無人機3; (d) 無人機4; (e) 無人機5

    Figure  8.  Velocity of UAVs: (a) UAV1; (b) UAV2; (c) UAV3; (d) UAV4; (e) UAV5

    圖  9  無人機編隊在谷歌地圖上的軌跡. (a) 俯視圖; (b) 側視圖

    Figure  9.  Path of UAV formation on Google Earth: (a) top view; (b) side view

    圖  10  無人機編隊外場試飛(地面相機拍攝). (a) 進入加速模式前; (b) 進入加速模式后

    Figure  10.  Field experimentation of UAV formation (ground shooting): (a) before acceleration mode; (b) after acceleration mode

    圖  11  無人機編隊外場試飛(空中機載相機拍攝). (a) 第五架無人機視角一; (b) 第五架無人機視角二

    Figure  11.  Field experimentation of UAV formation (aboard shooting): (a) the view 1 for UAV5; (b) the view 2 for UAV5

    表  1  試驗參數取值

    Table  1.   Value of parameters

    參數取值
    de/m(3.464 2)T
    h/m5
    v0/(m·s?1(1 0)T
    va/(m·s?1(3 0)T
    vmax/(m·s?15
    f5
    Ta/s20
    Te/s60
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Duan H B, Qiu H X. Unmanned Aerial Vehicle Swarm Autonomous Control Based on Swarm Intelligence. Beijing: Science Press, 2018

    段海濱, 邱華鑫. 基于群體智能的無人機集群自主控制. 北京: 科學出版社, 2018
    [2] Qiu H X, Duan H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation. Chin J Eng, 2017, 39(3): 317

    邱華鑫, 段海濱. 從鳥群群集飛行到無人機自主集群編隊. 工程科學學報, 2017, 39(3):317
    [3] Peng Z H, Sun L, Chen J. Online path planning for UAV low-altitude penetration based on an improved differential evolution algorithm. J Univ Sci Technol Beijing, 2012, 34(1): 96

    彭志紅, 孫琳, 陳杰. 基于改進差分進化算法的無人機在線低空突防航跡規劃. 北京科技大學學報, 2012, 34(1):96
    [4] Duan H B, Qiu H X, Chen L, et al. Prospects on unmanned aerial vehicle autonomous swarm technology. Sci Technol Rev, 2018, 36(21): 90

    段海濱, 邱華鑫, 陳琳, 等. 無人機自主集群技術研究展望. 科技導報, 2018, 36(21):90
    [5] Duan H B, Shen Y K, Wang Y, et al. Review of technological hot spots of unmanned aerial vehicle in 2018. Sci Technol Rev, 2019, 37(3): 82

    段海濱, 申燕凱, 王寅, 等. 2018年無人機領域熱點評述. 科技導報, 2019, 37(3):82
    [6] Zhu T, Ling H F, He W X. A cooperative control approach of UAV autonomous formation and reconfiguration // Proceedings of 2018 Chinese Control And Decision Conference (CCDC). Shenyang, 2018: 2415
    [7] Zong Q, Wang D D, Shao S K, et al. Research status and development of multi UAV coordinated formation flight control. J Harbin Inst Technol, 2017, 49(3): 1

    宗群, 王丹丹, 邵士凱, 等. 多無人機協同編隊飛行控制研究現狀及發展. 哈爾濱工業大學學報, 2017, 49(3):1
    [8] Askari A, Mortazavi M, Talebi H A. UAV formation control via the virtual structure approach. J Aerospace Eng, 2015, 28(1): 04014047 doi: 10.1061/(ASCE)AS.1943-5525.0000351
    [9] Kownacki C. Multi-UAV flight using virtual structure combined with behavioral approach. Acta Mech Autom, 2016, 10(2): 92
    [10] Kownacki C, Ambroziak L. Local and asymmetrical potential field approach to leader tracking problem in rigid formations of fixed-wing UAVs. Aerospace Sci Technol, 2017, 68: 465 doi: 10.1016/j.ast.2017.05.040
    [11] Mercado D A, Castro R, Lozano R. Quadrotors flight formation control using a leader-follower approach // Proceedings of 2013 European Control Conference (ECC). Zurich, 2013: 3858
    [12] Saska M, Baca T, Thomas J, et al. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Autonomous Robots, 2017, 41(4): 919 doi: 10.1007/s10514-016-9567-z
    [13] N?geli T, Conte C, Domahidi A, et al. Environment-independent formation flight for micro aerial vehicles // Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 1141
    [14] Ghamry K A, Dong Y Q, Kamel M A, et al. Real-time autonomous take-off, tracking and landing of UAV on a moving UGV platform // Proceedings of 2016 24th Mediterranean Conference on Control and Automation (MED). Athens, 2016: 1236
    [15] Aghdam A S, Menhaj M B, Barazandeh F, et al. Cooperative load transport with movable load center of mass using multiple quadrotor UAVs // Proceedings of 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA). Qazvin, 2016: 23
    [16] Shin J, Kim S, Suk J. Development of robust flocking control law for multiple UAVs using behavioral decentralized method. J Korean Soc Aeronautical Space Sci, 2015, 43(10): 859
    [17] Qiu H X, Duan H B, Fan Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory Appl, 2015, 32(10): 1298 doi: 10.7641/CTA.2015.50314

    邱華鑫, 段海濱, 范彥銘. 基于鴿群行為機制的多無人機自主編隊. 控制理論與應用, 2015, 32(10):1298 doi: 10.7641/CTA.2015.50314
    [18] Kuriki Y, Namerikawa T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control. SICE J Control Meas Syst Integration, 2015, 8(4): 285 doi: 10.9746/jcmsi.8.285
    [19] V?lkl B, Fritz J. Relation between travel strategy and social organization of migrating birds with special consideration of formation flight in the northern bald ibis. Philos Trans R Soc London Ser B, 2017, 372(1727): 20160235 doi: 10.1098/rstb.2016.0235
    [20] Ellis D H, Sladen W J L, Lishman W A, et al. Motorized migrations: the future or mere fantasy? BioScience, 2003, 53(3): 260 doi: 10.1641/0006-3568(2003)053[0260:MMTFOM]2.0.CO;2
    [21] Couzin I D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433: 513 doi: 10.1038/nature03236
    [22] Simons A M. Many wrongs: the advantage of group navigation. Trends Ecol Evol, 2004, 19(9): 453 doi: 10.1016/j.tree.2004.07.001
    [23] Lissaman P B S, Shollenberger C A. Formation flight of birds. Science, 1970, 168(3934): 1003 doi: 10.1126/science.168.3934.1003
    [24] Duan H B, Qiu H X. Unmanned aerial vehicle distributed formation rotation control inspired by leader-follower reciprocation of migrant birds. IEEE Access, 2018, 6: 23431 doi: 10.1109/ACCESS.2018.2815664
    [25] Zhou Z W, Duan H B, Fan Y M. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese. Scientia Sinica Technologica, 2017, 47(3): 230

    周子為, 段海濱, 范彥銘. 仿雁群行為機制的多無人機緊密編隊. 中國科學: 技術科學, 2017, 47(3):230
    [26] Batbayar N, Takekawa J Y, Newman S H, et al. Migration strategies of Swan Geese Anser cygnoides from northeast Mongolia. Wildfowl, 2013, 61: 90
    [27] Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behavior. Sci China Inf Sci, 2019, 62(1): 014201 doi: 10.1007/s11432-018-9587-0
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  2402
  • HTML全文瀏覽量:  1405
  • PDF下載量:  108
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-12-18
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回