<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

聚丙烯纖維加筋固化尾砂強度及變形特性

徐文彬 李乾龍 田明明

徐文彬, 李乾龍, 田明明. 聚丙烯纖維加筋固化尾砂強度及變形特性[J]. 工程科學學報, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002
引用本文: 徐文彬, 李乾龍, 田明明. 聚丙烯纖維加筋固化尾砂強度及變形特性[J]. 工程科學學報, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002
XU Wen-bin, LI Qian-long, TIAN Ming-ming. Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill[J]. Chinese Journal of Engineering, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002
Citation: XU Wen-bin, LI Qian-long, TIAN Ming-ming. Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill[J]. Chinese Journal of Engineering, 2019, 41(12): 1618-1626. doi: 10.13374/j.issn2095-9389.2018.12.14.002

聚丙烯纖維加筋固化尾砂強度及變形特性

doi: 10.13374/j.issn2095-9389.2018.12.14.002
基金項目: 國家重點研發計劃資助項目(2018YFC0808403)
詳細信息
    通訊作者:

    E-mail:xuwb08@163.com

  • 中圖分類號: TD 853

Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill

More Information
  • 摘要: 針對膠結充填體脆性強、易開裂等問題,以聚丙烯纖維為加筋材料,通過設置水泥與尾砂質量比為1∶10和1∶20,纖維摻量為0、0.05%、0.15%和0.25%的充填體進行無側限抗壓強度試驗,探究纖維摻量對膠結充填體強度及變形特性的影響,借助掃描電鏡(SEM),從微觀角度探討纖維對充填體力學性質的作用機制。研究結果表明:充填料漿的屈服應力隨纖維摻量增加呈線性增大,其流態模型符合Bingham流體;隨著纖維摻量的增加,充填體的無側限抗壓強度呈先增大后減小趨勢,纖維最優摻量為0.15%;摻入纖維有效地減緩了裂紋的擴展,約束了充填體的變形,充填體的峰后應變軟化延長,殘余強度增大,破壞特征由脆性向延性轉變;纖維的加固效果主要受纖維與尾砂?水泥基體界面之間的黏結與摩擦作用控制。

     

  • 圖  1  尾砂粒徑分布圖

    Figure  1.  Tailings particle size distribution map

    圖  2  料漿屈服應力隨纖維摻量變化關系

    Figure  2.  Relationship between yield stress and viscosity coefficient of slurry with fiber content

    圖  3  充填體試件應力?應變關系曲線. (a) 養護齡期3 d; (b) 養護齡期7 d; (c) 養護齡期28 d

    Figure  3.  Stress?strain curves of CTB specimens: (a) curing age of 3 d; (b) curing age of 7 d; (c) curing age of 28 d

    圖  4  充填體抗壓強度與纖維摻量的關系. (a) 養護齡期3 d; (b) 養護齡期7 d; (c) 養護齡期28 d

    Figure  4.  Relationship between UCS of CTB and fiber content: (a) curing age of 3 d; (b) curing age of 7 d; (c) curing age of 28 d

    圖  5  充填體試件破壞斷口形貌

    Figure  5.  Fracture morphology of the CTB specimen

    圖  6  充填體內部纖維分布

    Figure  6.  Distribution of fibers in the CTB specimen

    圖  7  纖維與尾砂?水泥基體界面力學作用示意圖

    Figure  7.  Schematic diagram of mechanical interaction between fiber and tailings?cement matrix

    圖  8  纖維拔出后留下的凹槽

    Figure  8.  Groove left after the fiber is pulled out

    圖  9  纖維表面形態特征

    Figure  9.  Morphology characteristics of the fiber surface

    圖  10  充填體試件破壞方式. (a) 纖維摻量0; (b) 纖維摻量0.05%; (c) 纖維摻量0.15%; (d) 纖維摻量0.25%

    Figure  10.  Failure modes of CTB specimens: (a) fiber contents of 0; (b) fiber contents of 0.05%; (c) fiber contents of 0.15%; (d) fiber contents of 0.25%

    表  1  尾砂和水泥的化學組成成分

    Table  1.   Chemical composition of tailings and cement

    材料化學成分質量分數/%
    SiO2CaOFe2O3Al2O3MnOK2OMgOCuOSO3Na2OTiO2燒失量
    尾砂52.6011.6017.203.680.112.434.560.1904.871.751.01
    水泥20.3464.783.115.0200.351.0902.200.100.262.75
    下載: 導出CSV

    表  2  聚丙烯纖維的物理力學參數

    Table  2.   Physical and mechanical parameters of polypropylene fiber

    類型長度/mm直徑/μm密度/(g·m?3抗拉強度/MPa彈性模量/GPa延伸率/%耐酸堿性分散性
    束狀單絲12310.91≥400≥3.530極強極好
    下載: 導出CSV

    表  3  料漿流變特性參數

    Table  3.   Rheological property parameters of the slurry

    灰砂比纖維摻量/%擬合方程n相關系數,R2
    1∶100.00τ=65.84+1.22γ1.000.9908
    1∶100.05τ=83.49+1.57γ1.000.9921
    1∶100.15τ=107.46+1.84γ1.000.9894
    1∶100.25τ=136.60+2.61γ1.000.9893
    1∶200.00τ=63.98+1.07γ1.000.9830
    1∶200.05τ=78.45+1.50γ1.000.9920
    1∶200.15τ=103.59+1.93γ1.000.9917
    1∶200.25τ=130.08+2.27γ1.000.9876
    下載: 導出CSV

    表  4  不同纖維摻量下充填體試件脆性程度指標

    Table  4.   Brittleness index of CTB specimens under different fiber contents

    灰砂比纖維摻量/%σ${\upsilon _\sigma }$Bs
    1∶100.000.930.29590.2752
    1∶100.050.830.24790.2058
    1∶100.150.810.24340.1972
    1∶100.250.710.21720.1542
    1∶200.000.860.27040.2325
    1∶200.050.780.22430.1750
    1∶200.150.670.20410.1367
    1∶200.250.660.19710.1301
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236

    李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236
    [2] Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377

    張吉雄, 張強, 巨峰, 等. 深部煤炭資源采選充綠色化開采理論與技術. 煤炭學報, 2018, 43(2):377
    [3] Yu R C. Achievements and subjects needing studied further of filling technology innovation in China. Min Technol, 2011, 11(3): 1 doi: 10.3969/j.issn.1671-2900.2011.03.001

    于潤滄. 我國充填工藝創新成就與尚需深入研究的課題. 采礦技術, 2011, 11(3):1 doi: 10.3969/j.issn.1671-2900.2011.03.001
    [4] Consoli N C, Bassani M A A, Festugato L. Effect of fiber-reinforcement on the strength of cemented soils. Geotextiles Geomembranes, 2010, 28(4): 344 doi: 10.1016/j.geotexmem.2010.01.005
    [5] Akbulut S, Arasan S, Kalkan E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl Clay Sci, 2007, 38(1-2): 23 doi: 10.1016/j.clay.2007.02.001
    [6] Huang X Y, Ni W, Li K Q. Development of engineered cementitious composites containing iron ore tailing powders. Chin J Eng, 2015, 37(11): 1491

    黃曉燕, 倪文, 李克慶. 鐵尾礦粉制備高延性纖維增強水泥基復合材料. 工程科學學報, 2015, 37(11):1491
    [7] Lu Q, Guo S L, Wang M M, et al. Experimental study of mechanical properties of fiber cement soil. Rock Soil Mech, 2016, 37(Suppl 2): 421

    鹿群, 郭少龍, 王閔閔, 等. 纖維水泥土力學性能的試驗研究. 巖土力學, 2016, 37(增刊 2):421
    [8] Kakooei S, Akil H M, Jamshidi M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction Building Mater, 2012, 27(1): 73 doi: 10.1016/j.conbuildmat.2011.08.015
    [9] Hamidi A, Hooresfand M. Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles Geomembranes, 2013, 36: 1 doi: 10.1016/j.geotexmem.2012.10.005
    [10] Aly T, Sanjayan J G. Shrinkage-cracking behavior of OPC-fiber concrete at early-age. Mater Struct, 2010, 43(6): 755 doi: 10.1617/s11527-009-9526-7
    [11] Li J J, Niu J G, Wan C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Construction Building Mater, 2016, 118: 27 doi: 10.1016/j.conbuildmat.2016.04.116
    [12] Tang C S, Shi B, Gao W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles Geomembranes, 2007, 25(3): 194 doi: 10.1016/j.geotexmem.2006.11.002
    [13] Lin Y J, Li H Y. Experimental study on the compressive performance of polypropylene fiber reinforced lightweight aggregate concret. Bull Chin Ceram Soc, 2013, 32(10): 2160

    林艷杰, 李紅云. 聚丙烯纖維輕骨料混凝土的抗壓性能實驗研究. 硅酸鹽通報, 2013, 32(10):2160
    [14] Xu W B, Yang B G, Yang S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry. J Central S Univ Sci Technol, 2016, 47(4): 1282

    徐文彬, 楊寶貴, 楊勝利, 等. 矸石充填料漿流變特性與顆粒級配相關性試驗研究. 中南大學學報: 自然科學版, 2016, 47(4):1282
    [15] Zhang P, Li Q F. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites Part B Eng, 2013, 45(1): 1587 doi: 10.1016/j.compositesb.2012.10.006
    [16] Cai M F, He M C, Liu D Y. Rock Mechanics and Engineering. 2nd Ed. Beijing: Science Press, 2013

    蔡美峰, 何滿潮, 劉東燕. 巖石力學與工程. 2版. 北京: 科學出版社, 2013
    [17] Wang W, Wang Z H, Zeng Y, et al. Experimental study of anti-cracking and reinforcement behaviors of polypropylene fiber composite soil. Rock Soil Mech, 2011, 32(3): 703 doi: 10.3969/j.issn.1000-7598.2011.03.011

    王偉, 王中華, 曾媛, 等. 聚丙烯纖維復合土抗裂補強特性試驗研究. 巖土力學, 2011, 32(3):703 doi: 10.3969/j.issn.1000-7598.2011.03.011
    [18] Zhou H, Meng F Z, Zhang C Q, et al. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin J Rock Mech Eng, 2014, 33(6): 1114

    周輝, 孟凡震, 張傳慶, 等. 基于應力–應變曲線的巖石脆性特征定量評價方法. 巖石力學與工程學報, 2014, 33(6):1114
    [19] Ruan B, Peng X X, Mi J J, et al. Experimental study on shear strength of polypropylene fiber reinforced red clay. J Railway Sci Eng, 2017, 14(4): 705 doi: 10.3969/j.issn.1672-7029.2017.04.006

    阮波, 彭學先, 米娟娟, 等. 聚丙烯纖維加筋紅黏土抗剪強度特性試驗研究. 鐵道科學與工程學報, 2017, 14(4):705 doi: 10.3969/j.issn.1672-7029.2017.04.006
    [20] Deng Y S, Wu P, Zhao M H, et al. Strength of expansive soil reinforced by polypropylene fiber under optimal water content. Rock Soil Mech, 2017, 38(2): 349

    鄧友生, 吳鵬, 趙明華, 等. 基于最優含水率的聚丙烯纖維增強膨脹土強度研究. 巖土力學, 2017, 38(2):349
    [21] Yang Z. Strength and Deformation Characteristic of Reinforced Sand[Dissertation]. Los Angeles: University of California, 1972
    [22] Xu W B, Du J H, Song W D, et al. Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials. Rock Soil Mech, 2013, 34(8): 2295

    徐文彬, 杜建華, 宋衛東, 等. 超細全尾砂材料膠凝成巖機理試驗. 巖土力學, 2013, 34(8):2295
    [23] Xu W B, Pan W D, Ding M L. Experiment on evolution of microstructures and long-term strength model of cemented backfill mass. J Central S Univ Sci Technol, 2015, 46(6): 2333 doi: 10.11817/j.issn.1672-7207.2015.06.046

    徐文彬, 潘衛東, 丁明龍. 膠結充填體內部微觀結構演化及其長期強度模型試驗. 中南大學學報(自然科學版), 2015, 46(6):2333 doi: 10.11817/j.issn.1672-7207.2015.06.046
    [24] Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640

    陳蛟龍, 張娜, 李恒, 等. 赤泥基似膏體充填材料水化特性研究. 工程科學學報, 2017, 39(11):1640
    [25] Xu W B, Cao P W, Tian M M. Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents. Minerals, 2018, 8(4): 167 doi: 10.3390/min8040167
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數:  1237
  • HTML全文瀏覽量:  904
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-12-14
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回