Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill
-
摘要: 針對膠結充填體脆性強、易開裂等問題,以聚丙烯纖維為加筋材料,通過設置水泥與尾砂質量比為1∶10和1∶20,纖維摻量為0、0.05%、0.15%和0.25%的充填體進行無側限抗壓強度試驗,探究纖維摻量對膠結充填體強度及變形特性的影響,借助掃描電鏡(SEM),從微觀角度探討纖維對充填體力學性質的作用機制。研究結果表明:充填料漿的屈服應力隨纖維摻量增加呈線性增大,其流態模型符合Bingham流體;隨著纖維摻量的增加,充填體的無側限抗壓強度呈先增大后減小趨勢,纖維最優摻量為0.15%;摻入纖維有效地減緩了裂紋的擴展,約束了充填體的變形,充填體的峰后應變軟化延長,殘余強度增大,破壞特征由脆性向延性轉變;纖維的加固效果主要受纖維與尾砂?水泥基體界面之間的黏結與摩擦作用控制。Abstract: Cemented tailings backfill (CTB) technology, an innovative mode of tailings management, has been widely applied in many metal mines worldwide due to its advantages of safety, environmental protection, and high economic benefit. During the mining process, CTB should have sufficient mechanical strength to maintain the stability of the underground stopes and provide a safe environment for workers and mining equipment. However, in deep mining, cracks and imperfection in CTB are usually generated by the extraction of adjacent stopes, blasting disturbances, and stress concentration. Existence of these cracks weakens the engineering properties. It causes instability of backfill stopes and increases ore dilution. At present, the mechanical strength of CTB structures is improved by increasing binder content, which directly leads to an increased backfilling cost. Hence, to solve the problems mentioned above, CTB specimens were prepared with cement-tailings ratios of 1∶10 and 1∶20, and polypropylene fiber contents of 0, 0.05%, 0.15%, and 0.25% (by dry weight of tailings and cement). The effect of fiber content on the mechanical strength and deformation properties were investigated by conducting unconfined compressive strength (UCS) tests. Referring to scanning electron microscopy (SEM), the mechanism of fiber reinforcement is discussed. Results indicate that the yield stress of fresh CTB mixtures increase linearly with increasing fiber content, and the rheological characteristic of the mixtures conformed to the behavior of Bingham. UCS values of CTB increase with increasing fiber content, but decrease when the fiber content is > 0.15%. Optimal fiber content is 0.15%. It is found that fibers can effectively delay the expansion of cracks and constrain the deformation of backfill. The post-peak strain softening and residual strength are improved by the addition of fibers. Failure characteristics of CTB are transformed from brittleness to ductility due to the mixed fibers. The reinforcement effect of fiber is mainly controlled by the adhesion and friction between fibers and tailings-cement matrix. The overall objectives are to improve current understanding of the mechanical properties of CTB, thereby reducing the risk of clogged pipelines and higher backfilling costs as well as improving the stability of CTB structures.
-
表 1 尾砂和水泥的化學組成成分
Table 1. Chemical composition of tailings and cement
材料 化學成分質量分數/% SiO2 CaO Fe2O3 Al2O3 MnO K2O MgO CuO SO3 Na2O TiO2 燒失量 尾砂 52.60 11.60 17.20 3.68 0.11 2.43 4.56 0.19 0 4.87 1.75 1.01 水泥 20.34 64.78 3.11 5.02 0 0.35 1.09 0 2.20 0.10 0.26 2.75 表 2 聚丙烯纖維的物理力學參數
Table 2. Physical and mechanical parameters of polypropylene fiber
類型 長度/mm 直徑/μm 密度/(g·m?3) 抗拉強度/MPa 彈性模量/GPa 延伸率/% 耐酸堿性 分散性 束狀單絲 12 31 0.91 ≥400 ≥3.5 30 極強 極好 表 3 料漿流變特性參數
Table 3. Rheological property parameters of the slurry
灰砂比 纖維摻量/% 擬合方程 n 相關系數,R2 1∶10 0.00 τ=65.84+1.22γ 1.00 0.9908 1∶10 0.05 τ=83.49+1.57γ 1.00 0.9921 1∶10 0.15 τ=107.46+1.84γ 1.00 0.9894 1∶10 0.25 τ=136.60+2.61γ 1.00 0.9893 1∶20 0.00 τ=63.98+1.07γ 1.00 0.9830 1∶20 0.05 τ=78.45+1.50γ 1.00 0.9920 1∶20 0.15 τ=103.59+1.93γ 1.00 0.9917 1∶20 0.25 τ=130.08+2.27γ 1.00 0.9876 表 4 不同纖維摻量下充填體試件脆性程度指標
Table 4. Brittleness index of CTB specimens under different fiber contents
灰砂比 纖維摻量/% △σ ${\upsilon _\sigma }$ Bs 1∶10 0.00 0.93 0.2959 0.2752 1∶10 0.05 0.83 0.2479 0.2058 1∶10 0.15 0.81 0.2434 0.1972 1∶10 0.25 0.71 0.2172 0.1542 1∶20 0.00 0.86 0.2704 0.2325 1∶20 0.05 0.78 0.2243 0.1750 1∶20 0.15 0.67 0.2041 0.1367 1∶20 0.25 0.66 0.1971 0.1301 www.77susu.com -
參考文獻
[1] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236 [2] Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377張吉雄, 張強, 巨峰, 等. 深部煤炭資源采選充綠色化開采理論與技術. 煤炭學報, 2018, 43(2):377 [3] Yu R C. Achievements and subjects needing studied further of filling technology innovation in China. Min Technol, 2011, 11(3): 1 doi: 10.3969/j.issn.1671-2900.2011.03.001于潤滄. 我國充填工藝創新成就與尚需深入研究的課題. 采礦技術, 2011, 11(3):1 doi: 10.3969/j.issn.1671-2900.2011.03.001 [4] Consoli N C, Bassani M A A, Festugato L. Effect of fiber-reinforcement on the strength of cemented soils. Geotextiles Geomembranes, 2010, 28(4): 344 doi: 10.1016/j.geotexmem.2010.01.005 [5] Akbulut S, Arasan S, Kalkan E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl Clay Sci, 2007, 38(1-2): 23 doi: 10.1016/j.clay.2007.02.001 [6] Huang X Y, Ni W, Li K Q. Development of engineered cementitious composites containing iron ore tailing powders. Chin J Eng, 2015, 37(11): 1491黃曉燕, 倪文, 李克慶. 鐵尾礦粉制備高延性纖維增強水泥基復合材料. 工程科學學報, 2015, 37(11):1491 [7] Lu Q, Guo S L, Wang M M, et al. Experimental study of mechanical properties of fiber cement soil. Rock Soil Mech, 2016, 37(Suppl 2): 421鹿群, 郭少龍, 王閔閔, 等. 纖維水泥土力學性能的試驗研究. 巖土力學, 2016, 37(增刊 2):421 [8] Kakooei S, Akil H M, Jamshidi M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction Building Mater, 2012, 27(1): 73 doi: 10.1016/j.conbuildmat.2011.08.015 [9] Hamidi A, Hooresfand M. Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles Geomembranes, 2013, 36: 1 doi: 10.1016/j.geotexmem.2012.10.005 [10] Aly T, Sanjayan J G. Shrinkage-cracking behavior of OPC-fiber concrete at early-age. Mater Struct, 2010, 43(6): 755 doi: 10.1617/s11527-009-9526-7 [11] Li J J, Niu J G, Wan C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Construction Building Mater, 2016, 118: 27 doi: 10.1016/j.conbuildmat.2016.04.116 [12] Tang C S, Shi B, Gao W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles Geomembranes, 2007, 25(3): 194 doi: 10.1016/j.geotexmem.2006.11.002 [13] Lin Y J, Li H Y. Experimental study on the compressive performance of polypropylene fiber reinforced lightweight aggregate concret. Bull Chin Ceram Soc, 2013, 32(10): 2160林艷杰, 李紅云. 聚丙烯纖維輕骨料混凝土的抗壓性能實驗研究. 硅酸鹽通報, 2013, 32(10):2160 [14] Xu W B, Yang B G, Yang S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry. J Central S Univ Sci Technol, 2016, 47(4): 1282徐文彬, 楊寶貴, 楊勝利, 等. 矸石充填料漿流變特性與顆粒級配相關性試驗研究. 中南大學學報: 自然科學版, 2016, 47(4):1282 [15] Zhang P, Li Q F. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites Part B Eng, 2013, 45(1): 1587 doi: 10.1016/j.compositesb.2012.10.006 [16] Cai M F, He M C, Liu D Y. Rock Mechanics and Engineering. 2nd Ed. Beijing: Science Press, 2013蔡美峰, 何滿潮, 劉東燕. 巖石力學與工程. 2版. 北京: 科學出版社, 2013 [17] Wang W, Wang Z H, Zeng Y, et al. Experimental study of anti-cracking and reinforcement behaviors of polypropylene fiber composite soil. Rock Soil Mech, 2011, 32(3): 703 doi: 10.3969/j.issn.1000-7598.2011.03.011王偉, 王中華, 曾媛, 等. 聚丙烯纖維復合土抗裂補強特性試驗研究. 巖土力學, 2011, 32(3):703 doi: 10.3969/j.issn.1000-7598.2011.03.011 [18] Zhou H, Meng F Z, Zhang C Q, et al. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin J Rock Mech Eng, 2014, 33(6): 1114周輝, 孟凡震, 張傳慶, 等. 基于應力–應變曲線的巖石脆性特征定量評價方法. 巖石力學與工程學報, 2014, 33(6):1114 [19] Ruan B, Peng X X, Mi J J, et al. Experimental study on shear strength of polypropylene fiber reinforced red clay. J Railway Sci Eng, 2017, 14(4): 705 doi: 10.3969/j.issn.1672-7029.2017.04.006阮波, 彭學先, 米娟娟, 等. 聚丙烯纖維加筋紅黏土抗剪強度特性試驗研究. 鐵道科學與工程學報, 2017, 14(4):705 doi: 10.3969/j.issn.1672-7029.2017.04.006 [20] Deng Y S, Wu P, Zhao M H, et al. Strength of expansive soil reinforced by polypropylene fiber under optimal water content. Rock Soil Mech, 2017, 38(2): 349鄧友生, 吳鵬, 趙明華, 等. 基于最優含水率的聚丙烯纖維增強膨脹土強度研究. 巖土力學, 2017, 38(2):349 [21] Yang Z. Strength and Deformation Characteristic of Reinforced Sand[Dissertation]. Los Angeles: University of California, 1972 [22] Xu W B, Du J H, Song W D, et al. Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials. Rock Soil Mech, 2013, 34(8): 2295徐文彬, 杜建華, 宋衛東, 等. 超細全尾砂材料膠凝成巖機理試驗. 巖土力學, 2013, 34(8):2295 [23] Xu W B, Pan W D, Ding M L. Experiment on evolution of microstructures and long-term strength model of cemented backfill mass. J Central S Univ Sci Technol, 2015, 46(6): 2333 doi: 10.11817/j.issn.1672-7207.2015.06.046徐文彬, 潘衛東, 丁明龍. 膠結充填體內部微觀結構演化及其長期強度模型試驗. 中南大學學報(自然科學版), 2015, 46(6):2333 doi: 10.11817/j.issn.1672-7207.2015.06.046 [24] Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640陳蛟龍, 張娜, 李恒, 等. 赤泥基似膏體充填材料水化特性研究. 工程科學學報, 2017, 39(11):1640 [25] Xu W B, Cao P W, Tian M M. Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents. Minerals, 2018, 8(4): 167 doi: 10.3390/min8040167 -