<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

時效對Al?2Li二元合金鈍化膜耐蝕性及結構的影響

王赫男 鄧佳誠 邵冰冰 劉紅

王赫男, 鄧佳誠, 邵冰冰, 劉紅. 時效對Al?2Li二元合金鈍化膜耐蝕性及結構的影響[J]. 工程科學學報, 2019, 41(11): 1444-1449. doi: 10.13374/j.issn2095-9389.2018.11.30.004
引用本文: 王赫男, 鄧佳誠, 邵冰冰, 劉紅. 時效對Al?2Li二元合金鈍化膜耐蝕性及結構的影響[J]. 工程科學學報, 2019, 41(11): 1444-1449. doi: 10.13374/j.issn2095-9389.2018.11.30.004
WANG He-nan, DENG Jia-cheng, SHAO Bing-bing, LIU Hong. Influence of aging on corrosion resistance and structure of the passive film formed on Al?2Li binary alloys[J]. Chinese Journal of Engineering, 2019, 41(11): 1444-1449. doi: 10.13374/j.issn2095-9389.2018.11.30.004
Citation: WANG He-nan, DENG Jia-cheng, SHAO Bing-bing, LIU Hong. Influence of aging on corrosion resistance and structure of the passive film formed on Al?2Li binary alloys[J]. Chinese Journal of Engineering, 2019, 41(11): 1444-1449. doi: 10.13374/j.issn2095-9389.2018.11.30.004

時效對Al?2Li二元合金鈍化膜耐蝕性及結構的影響

doi: 10.13374/j.issn2095-9389.2018.11.30.004
基金項目: 國家自然科學基金青年基金資助項目(51301113);遼寧省自然科學基金資助項目(20170540687)
詳細信息
    通訊作者:

    E-mail:15042098@qq.com

  • 中圖分類號: TG174.3

Influence of aging on corrosion resistance and structure of the passive film formed on Al?2Li binary alloys

More Information
  • 摘要: Al?Li合金具有低密度、高強韌性和低的腐蝕疲勞擴展速率的優點,在航空領域有著廣泛應用。Al3Li(δ′)相是Al?Li合金中主要強化相之一,因含有活性元素Li對該合金的腐蝕行為產生顯著影響。為明確δ′相在Al?Li合金電化學腐蝕中的作用,真空熔煉制備Al?2Li二元合金,固溶后進行180 ℃等溫時效,用X射線衍射(XRD)檢測合金的相組成。在質量分數為3.5% 的NaCl水溶液中,用動電位極化的方法測量了該合金的極化曲線。?0.85 V vs SCE鈍化電位下形成鈍化膜后,用電化學阻抗(EIS)檢驗鈍化膜的耐蝕性;用恒電位陽極極化和Mott?Schottky(M?S)曲線對該合金鈍化膜的結構進行分析。結果表明,Al?2Li合金的自腐蝕電位隨時效時間增加先正移后負移;固溶和時效合金鈍化膜的EIS都由兩個容抗弧組成,時效未改變鈍化膜的腐蝕機制;鈍化膜耐蝕性由高到低的順序為:時效20 h>固溶>時效40 h>時效1 h,且耐蝕性與其致密性及膜內的載流子密度有關。

     

  • 圖  1  在3.5% NaCl水溶液中Al?2Li合金的動電位極化曲線

    Figure  1.  Potentiodynamic polarization plots of Al?2Li alloy with different aging time in 3.5% NaCl solution

    圖  2  Al?2Li合金在?0.85 V vs SCE鈍化電位下的EIS結果. (a)Nyquist圖;(b)Bode圖

    Figure  2.  Electrochemical impedance spectra(EIS) of the Al?2Li alloy at ?0.85 V vs SCE: (a) Nyquist; (b) Bode

    圖  3  Al?2Li合金電極的等效電路圖. (a)RsRfQf)(RctCdl);(b)RsRfQf)(RctQdl

    Figure  3.  Equivalent circuit diagram of the Al?2Li Alloy electrode: (a) Rs(RfQf)(RctCdl); (b) Rs(RfQf)(RctQdl)

    圖  4  Al?2Li合金恒電位極化. (a) 鈍化電流密度與時間的雙對數曲線; (b) 擬合結果

    Figure  4.  Potentiostatic polarization plots of the Al?2Li alloy: (a) double-log plots of passive current density with time; (b) fitting slope values

    圖  5  Al?2Li合金?0.85 V vs SCE電位下形成鈍化膜的M?S曲線

    Figure  5.  M?S plots of the passive films formed at ?0.85 V vs SCE of the Al?2Li alloy

    圖  6  Al?2Li合金X射線衍射結果

    Figure  6.  X-ray diffraction (XRD) result of the Al?2Li alloy

    圖  7  Al?2Li合金鈍化膜結構示意圖

    Figure  7.  Sketch map of the passive films formed on the Al?2Li alloy

    表  1  Al?2Li合金動電位極化曲線的擬合結果

    Table  1.   Fitting results of potentiodynamic polarization plots of the Al?2Li alloy

    時效時間/h Ecorr/V(vs SCE) Icorr /(10?7·A·cm?2 Ep/(V vs SCE)
    0 ?1.115 3.23 ?0.755
    1 ?0.964 6.34 ?0.746
    20 ?1.072 0.73 ?0.750
    40 ?1.114 3.26 ?0.753
    下載: 導出CSV

    表  2  Al?2Li合金鈍化膜EIS擬合結果(圖3(a)

    Table  2.   Fitting parameters of EIS for the Al?2Li alloy (Fig. 3(a))

    時效時間/h Rs/(Ω·cm2 Qf Rf/(kΩ·cm2 Cdl/(μF·cm?2 Rct/(kΩ·cm2
    Y0/(Ω?1·cm?2·s?n n
    0 2.46 2.41×10?6 0.69 22.81 76.90 19.9
    1 3.22 3.23×10?4 0.65 19.19 89.92 16.7
    20 3.92 2.33×10?6 0.66 25.01 71.96 22.57
    下載: 導出CSV

    表  3  Al?2Li合金鈍化膜EIS擬合結果(圖3(b)

    Table  3.   Fitting parameters of EIS for the Al?2Li alloy (Fig. 3(b))

    時效時間/h Rs/(Ω·cm2 Qf Rf/(kΩ·cm2 Qdl Rct/(kΩ·cm2
    Y0/(Ω?1·cm?2·s?n n Y0/(Ω?1·cm?2·s?n n
    40 2.08 2.46×10?4 0.58 0.154 6.25×10?5 0.86 33.43
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A, 2000, 280(1): 102 doi: 10.1016/S0921-5093(99)00674-7
    [2] Ovei H, Jagle E A, Stark A, et al. Microstructural influences on strengthening in a naturally aged and overaged Al?Cu?Li?Mg based alloy. Mater Sci Eng A, 2015, 637: 162 doi: 10.1016/j.msea.2015.04.039
    [3] Li H Y, Huang D S, Kang W, et al. Effect of different aging processes on the microstructure and mechanical properties of a novel Al?Cu?Li alloy. J Mater Sci Technol, 2016, 32(10): 1049 doi: 10.1016/j.jmst.2016.01.018
    [4] Yu X X, Yin D F, Yu Z M, et al. Effects of cerium addition on solidification behaviour and intermetallic structure of novel Al-Cu-Li alloys. Rare Met Mater Eng, 2016, 45(6): 1423 doi: 10.1016/S1875-5372(16)30125-4
    [5] Yu X X, Yin D F, Yu Z M, et al. Microstructure evolution of novel Al?Cu?Li?Ce alloys during homogenization. Rare Met Mater Eng, 2016, 45(7): 1687 doi: 10.1016/S1875-5372(16)30141-2
    [6] Willams D B, Edington J W. The discontinuous precipitation reaction in dilute Al?Li alloys. Acta Metall, 1976, 24(4): 323 doi: 10.1016/0001-6160(76)90007-9
    [7] Baumann S F, Willams D B. A new method for the determination of the precipitate-matrix interfacial energy. Scripta Metall, 1984, 18(6): 611 doi: 10.1016/0036-9748(84)90351-X
    [8] Deschamps A, Sigli C, Mourey T, et al. Experimental and modelling assessment of precipitation kinetics in an Al?Li?Mg alloy. Acta Mater, 2012, 60(5): 1917 doi: 10.1016/j.actamat.2012.01.010
    [9] Kolobney N I, Khokhlatova L B, Fridlyander I N. Aging of Al?Li alloys having composite particles of hardening phases. Mater Forum, 2004, 28: 208
    [10] Pérez-Landazábal J I, Nó M L, Madariaga G, et al. Quantitative analysis of δ' precipitation kinetics in Al?Li alloys. Acta Mater, 2000, 48(6): 1283 doi: 10.1016/S1359-6454(99)00421-8
    [11] Huang J C, Ardell A J. Precipitation strengthening of binary Al?Li alloys by δ' precipitates. Mater Sci Eng A, 1988, 104: 149 doi: 10.1016/0025-5416(88)90416-8
    [12] Lewandowska M, Mizera J, Wyrzkowski J W. Cyclic behaviour of model Al?Li alloys: effect of the precipitate state. Mater Charact, 2000, 45(3): 195 doi: 10.1016/S1044-5803(00)00074-7
    [13] Prasad K S, Mukhopadhyay A K, Gokhale A A, et al. δ precipitation in an Al?Li?Cu?Mg?Zr alloy. Scripta Metall Mater, 1994, 30(10): 1299 doi: 10.1016/0956-716X(94)90262-3
    [14] Lin Y, Zheng Z Q, Li S C, et al. Microstructures and properties of 2099 Al?Li alloy. Mater Charact, 2013, 84: 88 doi: 10.1016/j.matchar.2013.07.015
    [15] Chai C, Li J F, Wang H, et al. Dependence of intergranular corrosion sensitivity of Al?Li alloys on aging stage. Rare Met Mater Eng, 2015, 44(10): 2523

    蔡超, 李勁風, 王恒, 等. 鋁鋰合金晶間腐蝕敏感性與時效階段的相關性. 稀有金屬材料與工程, 2015, 44(10):2523
    [16] Ma Y L, Zhou X R, Meng X M, et al. Influence of thermomechanical treatments on localized corrosion susceptibility and propagation mechanism of AA2099 Al?Li alloy. Trans Nonferrous Met Soc China, 2016, 26(6): 1472 doi: 10.1016/S1003-6326(16)64252-8
    [17] Goebel J, Ghidini T, Graham A J. Stress-corrosion cracking characterization of the advanced aerospace Al?Li 2099-T86 alloy. Mater Sci Eng A, 2016, 673: 16 doi: 10.1016/j.msea.2016.07.013
    [18] Niskanen P, Sanders T H. Influence of microstructure on the corrosion of Al?Li, Al?Li?Mn, Al?Li?Mg and Al?Li?Cu alloys in 3.5% NaCl solution. Bulletin de l'Association Technique Maritime et Aeronautique, 1981: 347
    [19] Ambat R, Prasad R K, Dwarakadasa E S. The influence of aging at 180 ℃ on the corrosion behaviour of a ternary Al?Li?Zr alloy. Corros Sci, 1995, 37(8): 1253 doi: 10.1016/0010-938X(95)00030-N
    [20] Moreto J A, Marino C E B, Bose Filho W W, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al?Li alloys used in aircraft fabrication. Corros Sci, 2014, 84: 30 doi: 10.1016/j.corsci.2014.03.001
    [21] Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films, I. Film growth kinetics. J Electrochem Soc, 1981, 128(6): 1187 doi: 10.1149/1.2127591
    [22] Lin L F, Chao C Y, Macdonald D D. A point defect model for anodic passive films, Ⅱ. Chemical breakdown and pit initiation. J Electrochem Soc, 1981, 128(6): 1194 doi: 10.1149/1.2127592
    [23] Morrison S R, translated by Wu H H. Electrochemistry at Semiconductor and Oxidized Metal Electrode. Beijing: Science Press, 1988
    [24] Lü J L, Liang T X, Wang C, et al. The passive film characteristics of several plastic deformation 2099 Al?Li alloy. J Alloys Compd, 2016, 662: 143 doi: 10.1016/j.jallcom.2015.12.051
    [25] Schultze J W, Lohrengel M M. Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta, 2000, 45(15-16): 2499 doi: 10.1016/S0013-4686(00)00347-9
    [26] Pletcher B A, Wang K G, Glicksman M E. Experimental, computational and theoretical studies of δ' phase coarsening in Al?Li alloys. Acta Mater, 2012, 60(16): 5803 doi: 10.1016/j.actamat.2012.07.021
    [27] Chai Z G, Meng F L, Zou Q. The precipitation behiavior of δ' phase in Al?Li alloy treated by aging?retrogression?reaging. Acta Phys Sin, 2001, 50(7): 1401 doi: 10.3321/j.issn:1000-3290.2001.07.039

    柴志剛, 孟繁玲, 鄒青. Al?Li合金時效?回歸?再時效析出δ'相的行為. 物理學報, 2001, 50(7):1401 doi: 10.3321/j.issn:1000-3290.2001.07.039
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  1003
  • HTML全文瀏覽量:  735
  • PDF下載量:  32
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-30
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回