-
摘要: 建立了球軸承ADAMS多體動力學模型,考慮軸承各元件之間的相互碰撞作用及摩擦力,分析了變工況下動量輪用球軸承的保持架質心的渦動行為,對保持架的運行穩定性做出了定量的分析。討論了軸承啟動加速度大小、軸向載荷和有無重力場對保持架穩定性的影響。結果表明軸承啟動加速度增加,縮短了軸承啟動過程的時間,引導面對保持架的引導作用增強,較高的轉速更有利于保持架運行的穩定,但較大的啟動加速度使得軸承摩擦力矩較大;軸向載荷升高加劇了滾動體與保持架的碰撞,增加了保持架的渦動狀態,而且軸向載荷的增加使得軸承摩擦力矩增加;失重狀態下保持架與套圈的碰撞加劇,保持架渦動增加。Abstract: The momentum wheel is a key device used for orbiting satellite attitude control. Its controlling accuracy is strongly influenced by the cage stability of the ball bearings in momentum wheels. The more stable the cage, the smaller the friction moment of the bearing, and the higher the control accuracy of the momentum wheel. In this study, an ADAMS multi-body dynamic model of ball bearings was built. In this model, the collision and friction were considered, which exist in the components of the ball bearing, that is, the balls, the rings, and the cage. The whirl behavior of the cage of the ball bearing used in the momentum wheel was analyzed under variable working conditions, and the cage stability was quantitatively analyzed. The effects of starting acceleration, axial load, and gravity field on the cage stability were discussed. The results show that an increase in the starting acceleration of the ball bearings can shorten the starting time, and the guiding effect of the guiding face on the cage is enhanced. Moreover, the cage is more stable when the speed of the ball bearing is higher. However, the greater starting acceleration can increase the friction moment of the ball bearing, which can shorten the service life. Under the premise of satisfying the cage stability, a smaller starting acceleration should be used as far as possible to prevent the larger friction moment. An increased axial load causes a strong collision of the cage and balls and increases the cage whirling state. The friction moment of the ball bearing increases when the axial load increases, which can lead to the generation of the wear and heat of bearing. In addition, an increase of the axial load of the ball bearing aggravates the collision of the balls and cage and increases the whirling state of the cage, and this reduces the cage stability. The collision of the cage and ring increases without gravity, causing an increase in the cage whirl.
-
表 1 軸承組件材料屬性表
Table 1. Material property of bearing component
零件 密度,ρ/(kg·m?3) 彈性模量,E/Pa 泊松比,μ 外圈 7.90×103 2.06×1011 0.29 內圈 7.90×103 2.06×1011 0.29 滾動體 7.90×103 2.06×1011 0.29 保持架 1.24×103 3.00×109 0.35 表 2 軸承啟動加速度大小對保持架質心軌跡演化的影響
Table 2. Influence of acceleration on the evolution of the mass center of cage
α/(r·min?1·s?1) 質心軌跡演化 加速區 穩態區 加速+穩態區 1000 5000 8000 表 3 軸承軸向力對保持架質心軌跡演化的影響
Table 3. Influence of axial load on the evolution of the mass center of cage
Fa/N 質心軌跡演化 加速區 穩態區 加速+穩態區 5 200 www.77susu.com -
參考文獻
[1] Ryu S J, Choe B S, Lee J K, et al. Correlation between friction coefficient and sound characteristics for cage instability of cryogenic deep groove ball bearings // Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Springer, Milan, 2015: 1921 [2] Kingsbury E P. Torque variations in instrument ball bearings. Tribology Trans, 1965, 8(4): 435 [3] Stevens K T. Experimental observations on torque variation caused by bearing cage instabilities // Proceedings of the Second Space Tribology Workshop. Paris, 1980: 101 [4] Zhang T, Chen X Y, Gu J M, et, al. Progress of research on cage stability of high-speed angular contact ball bearings. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 022026張濤, 陳曉陽, 顧家銘, 等. 高速角接觸球軸承保持架穩定性研究進展. 航空學報, 2018, 39(7):022026 [5] Yang X Q, Liu W X, Li X L. Dynamics analysis on cage of high speed roller bearing. Bearing, 2002(7): 1 doi: 10.3969/j.issn.1000-3762.2002.07.001楊咸啟, 劉文秀, 李曉玲. 高速滾子軸承保持架動力學分析. 軸承, 2002(7):1 doi: 10.3969/j.issn.1000-3762.2002.07.001 [6] Liu W X, Yang X Q, Chen G. Collision model and motion analysis on cage of high speed roller bearing. Bearing, 2003(9): 1 doi: 10.3969/j.issn.1000-3762.2003.09.001劉文秀, 楊咸啟, 陳貴. 高速滾子軸承保持架碰撞模型與運動分析. 軸承, 2003(9):1 doi: 10.3969/j.issn.1000-3762.2003.09.001 [7] Ye Z H, Li W, Qu X J, et al. Effect of elliptical pocket on cage dynamic performance of high speed ball bearings. Machinery Des Manufacture, 2016(6): 184 doi: 10.3969/j.issn.1001-3997.2016.06.049葉振環, 李偉, 曲祥君, 等. 橢圓兜孔對高速球軸承保持架動態性能的影響分析. 機械設計與制造, 2016(6):184 doi: 10.3969/j.issn.1001-3997.2016.06.049 [8] Choe B, Lee J, Jeon D, et al. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part I: effects of cage guidance and pocket clearances. Mechanical Syst Signal Process, 2019, 115: 545 doi: 10.1016/j.ymssp.2018.06.018 [9] Choe B, Kwak W, Jeon D, et al. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part Ⅱ: effects of cage mass imbalance. Mechanical Syst Signal Process, 2019, 116: 25 doi: 10.1016/j.ymssp.2018.06.034 [10] Ghaisas N, Wassgren C R, Sadeghi F. Cage instabilities in cylindrical roller bearings. J Tribol, 2004, 126(4): 681 doi: 10.1115/1.1792674 [11] Ashtekar A, Sadeghi F. A new approach for including cage flexibility in dynamic bearing models by using combined explicit finite and discrete element methods. J Tribol, 2012, 134(4): 041502 doi: 10.1115/1.4007348 [12] Liu X H. Dynamic Analysis Model of High Speed Rolling Bearings and Dynamic Performance of Cages[Dissertation]. Dalian: Dalian University of Technology, 2011劉秀海. 高速滾動軸承動力學分析模型與保持架動態性能研究[學位論文]. 大連: 大連理工大學, 2011 [13] Yao T Q, Wang L H, Liu X B, et al. Dynamic stability analysis on the cage of ball bearing under varying working environment. J Vib Shock, 2016, 35(18): 172姚廷強, 王立華, 劉孝保, 等. 變工況下角接觸球軸承保持架穩定性分析. 振動與沖擊, 2016, 35(18):172 [14] Yao T Q, Huang Y Y, Wang L H. Multibody contact dynamics for cylindrical roller bearing. J Vib Shock, 2015, 34(7): 15姚廷強, 黃亞宇, 王立華. 圓柱滾子軸承多體接觸動力學研究. 振動與沖擊, 2015, 34(7):15 [15] Ge S D, Sun H Y, Deng Y. Model analysis of stability of ball bearing cage. Bearing, 1997(10): 33葛世東, 孫紅原, 鄧印. 球軸承保持架穩定性的模型分析. 軸承, 1997(10):33 [16] Sun X, Deng S E, Chen G D, et al. Analysis of cage’s stability in a cylindrical roller bearing with elastic support. J Aerospace Power, 2018, 33(2): 487孫雪, 鄧四二, 陳國定, 等. 彈性支承下圓柱滾子軸承保持架穩定性分析. 航空動力學報, 2018, 33(2):487 [17] Ji B W, Jing M Q, Liu H, et al. Dynamic analysis and simulation of ball bearing cage based on ADAMS. Machine Build Autom, 2014, 43(5): 113 doi: 10.3969/j.issn.1671-5276.2014.05.037吉博文, 景敏卿, 劉恒, 等. 基于ADAMS的球軸承保持架動力學仿真. 機械制造與自動化, 2014, 43(5):113 doi: 10.3969/j.issn.1671-5276.2014.05.037 [18] Tan J, Chu Z J, Gu Z X, et al. Analysis on stability of mass center trajectory for cages based on box dimension. Bearing, 2014(5): 37 doi: 10.3969/j.issn.1000-3762.2014.05.011譚晶, 儲著金, 顧志鑫, 等. 基于盒維數的保持架質心軌跡穩定性分析. 軸承, 2014(5):37 doi: 10.3969/j.issn.1000-3762.2014.05.011 [19] Zhang L Y, Xiao S H, Li Q. Effect of cage pocket hole shape on stability of angular contact ball bearing. Lubr Eng, 2017, 42(6): 40 doi: 10.3969/j.issn.0254-0150.2017.06.009張樂宇, 肖曙紅, 李琦. 角接觸球軸承保持架兜孔形狀對其穩定性的影響. 潤滑與密封, 2017, 42(6):40 doi: 10.3969/j.issn.0254-0150.2017.06.009 [20] Tang P, Xiao S H, Li Q. Stability and friction torque of the angular contact ball bearing cage. Bearing, 2017(4): 5湯鵬, 肖曙紅, 李琦. 角接觸球軸承保持架穩定性及其摩擦力矩研究. 軸承, 2017(4):5 [21] Fan R R, Yao T Q, Liu X B, et al. Stability analysis of angular contact ball bearing cage. Machine Des Res, 2017, 33(4): 76范然然, 姚廷強, 劉孝保, 等. 角接觸球軸承保持架穩定性分析. 機械設計與研究, 2017, 33(4):76 -