Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load
-
摘要: 通過開展花崗巖和大理巖巴西圓盤聲發射試驗,結合掃描電鏡進行破裂面微觀形貌分析,探討了劈裂荷載下巖石聲發射特性與微觀破裂機制的關系。結果表明:基于RA(上升時間與幅值的比值)和AF(平均頻率)的變化趨勢,不同裂紋模式(拉伸裂紋、剪切裂紋以及復合裂紋)的分布和破壞強度受巖石結構影響,但巖石裂紋演化過程不受其影響。相應地,兩種巖樣破裂信號均以400~499 kHz為主,100~199 kHz的信號次之,但不同破裂階段的峰值頻率變化趨勢顯著不同。在微觀形貌上,花崗巖劈裂面的微觀形貌以層疊狀、臺階狀及平坦狀為主;而大理巖以光滑多面體狀為主。此外,結合頻率?尺度縮放關系可推測,400~499 kHz的信號應主要來自鉀長石、大理巖礦物顆粒內部的破裂;100~199 kHz的信號應主要來自石英礦物顆粒內部不連續分離以及壓密階段礦物顆粒之間的滑移。Abstract: Considering the polycrystalline and anisotropic features of rock, its mechanical failure actually involves the generation, propagation, and penetration of internal micro-cracks until an ultimate macro-fracture is achieved. The nucleation and propagation of cracks emits energy outward as elastic waves referred to as acoustic emission (AE). The close relationship between AE signals and the rock fracture mechanism has been demonstrated. Many instability and failure processes in underground engineering are induced by the effects of tensile stress on tunnels and chambers or local damage to the rock structure. Several compression experiments show that the main fracture mode of rock is tensile failure. Thus, investigations of rock AE characteristics under tensile failure and the effects of the rock fabric on crack propagation patterns are of great significance. This study assesses the signal characteristics AE and its relationship with the micro-rupture mechanisms in granite and marble under tensile stress. Herein, an MTS-322 rock mechanical test system was employed to carry out Brazilian split tests, and a scanning electron microscope was employed to carry out micro-morphological analysis of rupture surfaces. According to the trends of RA and AF, the distribution of crack modes-tensile and shear or mixed patterns in both rock types and its fracture strength depend on the rock fabric. By contrast, the evolution process of crack propagation appears to depend on the softening process. Although the rock fracture signals are mainly in the range of 400?499 kHz and 100?199 kHz, the variation trend of peak frequency shows significant differences at different failure stages. At the microtopographic level, granite mainly shows three micro-morphologies, including laminated, stepwise, and smooth planar patterns. Marble is mostly smooth polyhedrals. The signals at 400?499 kHz may be inferred to be mainly generated by fractures in the k-feldspar and marble minerals, while those at 100?199 kHz are mainly produced by discontinuous separation among quartz mineral particles and slipping among mineral particles in the compaction stage.
-
圖 5 劈裂荷載下巖石聲發射信號RA值與AF值的關系分布圖. (a)花崗巖RA值與AF值分布圖; (b)花崗巖RA值與AF值數據密度云圖; (c)大理巖RA值與AF值分布圖; (d)大理巖RA值與AF值數據密度云圖
Figure 5. RA and average frequency distribution diagrams of granite and marble under a splitting load: (a) RA versus AF distribution diagram in granite; (b) RA versus AF data density map in granite; (c) RA versus AF distribution diagram in marble; (d) RA versus AF data density map in marble
圖 6 兩種巖石的峰值頻率隨加載時間的變化. (a)花崗巖; (b)大理巖; (c)花崗巖峰值頻率隨時間變化的密度云圖; (d)大理巖峰值頻率隨時間變化的密度云圖
Figure 6. Temporal peak frequency distribution under different splitting loads: (a) granite and (b) marble; (c) peak frequency versus time data density maps in granite; (d) peak frequency versus time data density maps in marble
圖 8 花崗巖劈裂面電鏡掃描形貌圖. (a)石英顆粒層平坦狀形貌圖; (b)鉀長石臺階狀形貌圖; (c)鉀長石顆粒疊狀形貌圖; (d)石英顆粒能譜圖; (e)臺階狀鉀長石顆粒能譜圖; (f)層疊狀鉀長石顆粒能譜圖
Figure 8. SEM images of the splitting surfaces of granite: (a) “smooth planar” morphology of quartz; (b) “sidestep” morphology of k-feldspar; (c) “stack-up” morphology of k-feldspar; (d) energy spectrum diagram of quartz; (e) energy spectrum diagram of “sidestep” morphology of k-feldspar; (f) energy spectrum diagram of “stack-up” morphology of k-feldspar
圖 9 大理巖劈裂面電鏡掃描形貌圖. (a)白云石顆粒光滑多面體狀形貌圖; (b)方解石聚片雙晶結構形貌圖; (c)圖(a)黑圈區域高分辨率下的形貌圖; (d)白云石顆粒能譜圖; (e)方解石顆粒能譜圖
Figure 9. SEM photos of the fracture surfaces of marble in the Brazilian split test: (a) “smooth polyhedrals” morphology of dolomite; (b) “polycrystalline” morphology of calcite; (c) high-magnification morphology of the black square in (a); (d) energy spectrum diagram of dolomite; (e) energy spectrum diagram of calcite
表 1 巖樣基本參數
Table 1. Basic parameters of the rock samples
試樣編號 直徑/mm 高/mm 密度/(g·cm?3) 波速/(m·s?1) G1 48.41 49.95 2.61 4197.83 G2 48.57 50.36 2.63 4272.61 G3 48.33 50.62 2.62 4211.35 M1 50.99 49.32 2.85 3825.41 M2 50.35 48.19 2.78 3901.74 M3 50.79 48.57 2.85 3857.66 表 2 聲發射設備參數設置
Table 2. Parameter settings of the acoustic emission device
門檻值/
dB前置增益/
dB采樣長度/
kb采樣頻率/
MHzPDT/
μsHLT/
μsHDT/
μs40 40 5 10 50 300 200 表 3 不同巖石聲發射RA-AF分布差異
Table 3. Differences in RA-AF distribution obtained from Fig. 5
巖石類型 編號 RA值/(ms·V?1) AF值/kHz 花崗巖 G1 0~1.36 75~184 G2 0~1.22 80~177 G3 0~1.13 82~186 平均值 0~1.24 79~182 大理巖 M1 0~0.52 100~174 M2 0~0.71 93~167 M3 0~0.86 97~185 平均值 0~0.70 97~175 表 4 巴西劈裂荷載下巖石聲發射峰值頻率分布
Table 4. Distribution percentages of AE peak frequency for four rock types in the Brazilian split test
試樣編號 峰值頻率占比/% <100 kHz 100~199 kHz 200~299 kHz 300~399 kHz ≥400 kHz G1 5.92 29.33 6.84 8.04 49.86 G2 4.85 14.15 4.18 6.24 70.58 G3 4.35 19.92 7.83 8.41 59.50 平均值 5.04 21.13 6.28 7.56 59.98 M1 7.19 26.87 11.35 3.56 51.03 M2 15.64 32.21 0.88 1.75 49.52 M3 6.97 20.40 0.01 2.40 60.21 平均值 9.93 26.49 7.41 2.57 53.58 www.77susu.com -
參考文獻
[1] Wang X J, Feng X, Zhao K. Numerical simulation on acoustic emission of roof fill failure of mining drift with different cross-section. Min Res Dev, 2011, 31(1): 9王曉軍, 馮蕭, 趙康. 不同回采斷面頂板充填體破裂聲發射數值模擬研究. 礦業研究與開發, 2011, 31(1):9 [2] Zhang S W, Shou K J, Xian X F, et al. Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests. Tunnelling Underground Space Technol, 2018, 71: 298 doi: 10.1016/j.tust.2017.08.031 [3] Lockner D. The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr, 1993, 30(7): 883 doi: 10.1016/0148-9062(93)90041-B [4] Rudajev V, Vilhelm J, Lokají?ek T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure. Int J Rock Mech Min Sci, 2000, 37(4): 699 doi: 10.1016/S1365-1609(99)00126-4 [5] Yang L, Kang H S, Zhou Y C, et al. Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: cluster analysis of acoustic emission signals. Surf Coat Technol, 2015, 264: 97 doi: 10.1016/j.surfcoat.2015.01.014 [6] Zhang Y B, Liang P, Liu X X, et al. Experimental study on precursor of rock burst based on acoustic emission signal dominant-frequency and entropy. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2959張艷博, 梁鵬, 劉祥鑫, 等. 基于聲發射信號主頻和熵值的巖石破裂前兆試驗研究. 巖石力學與工程學報, 2015, 34(增刊1): 2959 [7] Shiotani T, Ohtsu M, Ikeda K. Detection and evaluation of AE waves due to rock deformation. Construction Building Mater, 2001, 15(5-6): 235 doi: 10.1016/S0950-0618(00)00073-8 [8] Carpinteri A, Corrado M, Lacidogna G. Heterogeneous materials in compression: correlations between absorbed, released and acoustic emission energies. Eng Fail Anal, 2013, 33: 236 doi: 10.1016/j.engfailanal.2013.05.016 [9] Xiao F K, Liu G, Qin T, et al. Acoustic emission (AE) characteristics of fine sandstone and coarse sandstone fracture process under tension-compression-shear stress. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3458肖福坤, 劉剛, 秦濤, 等. 拉−壓−剪應力下細砂巖和粗砂巖破裂過程聲發射特性研究. 巖石力學與工程學報, 2016, 35(增刊2): 3458 [10] Wang H J, Liu D A, Cui Z D, et al. Investigation of the fracture modes of red sandstone using XFEM and acoustic emissions. Theor Appl Fract Mech, 2016, 85: 283 doi: 10.1016/j.tafmec.2016.03.012 [11] Zeng P, Liu Y J, Ji H G, et al. Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression. Chin J Geotech Eng, 2017, 39(3): 509 doi: 10.11779/CJGE201703015曾鵬, 劉陽軍, 紀洪廣, 等. 單軸壓縮下粗砂巖臨界破壞的多頻段聲發射耦合判據和前兆識別特征. 巖土工程學報, 2017, 39(3):509 doi: 10.11779/CJGE201703015 [12] Bucheim W. Geophysical methods for the study of rock pressure in coal and potash salt mining//International Strata Control Congress. Leipzig, 1958: 222 [13] Rodríguez P, Celestino T B. Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks. Eng Fract Mech, 2019, 210: 54 doi: 10.1016/j.engfracmech.2018.06.027 [14] Liang C Y, Wu S R, Li X. Research on micro-meso characteristics of granite fracture under uniaxial compression at low and intermediate strain rates. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2977梁昌玉, 吳樹仁, 李曉. 中低應變率范圍內單軸壓縮下花崗巖斷口細-微觀特征研究. 巖石力學與工程學報, 2015, 34(增刊1): 2977 [15] Zhang Q B, Zhao J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int J Fract, 2014, 189(1): 1 doi: 10.1007/s10704-014-9959-z [16] Manthei G. Characterization of acoustic emission sources in a rock salt specimen under triaxial compression. Bull Seismological Soc Am, 2005, 95(5): 1674 doi: 10.1785/0120040076 [17] Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci, 2007, 44(1): 108 doi: 10.1016/j.ijrmms.2006.05.003 [18] Li S Y, He T M, Yin X C. Rock Fracture Mechanics. Beijing: Science press, 2015李世愚, 和泰名, 尹祥礎. 巖石斷裂力學. 北京: 科學出版社, 2015 [19] Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission. Construction Build Mater, 2010, 24(12): 2339 doi: 10.1016/j.conbuildmat.2010.05.004 [20] Zang S X. Earthquake stress drop and the stress drops of rock fracture. Acta Seismologica Sinica, 1984, 6(2): 182臧紹先. 地震應力降與巖石破裂應力降. 地震學報, 1984, 6(2):182 [21] Backers T, Stanchits S, Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: the effect of loading rate. Int J Rock Mech Min Sci, 2005, 42(7-8): 1094 doi: 10.1016/j.ijrmms.2005.05.011 [22] Mogi K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthquake Res Inst Univ Tokyo, 1962, 40: 125 [23] Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismological Soc Am, 1968, 58(1): 399 [24] Burlini L, Vinciguerra S, Toro G D, et al. Seismicity preceding volcanic eruptions: new experimental insights. Geology, 2007, 35(2): 183 doi: 10.1130/G23195A.1 [25] Benson P M, Vinciguerra S, Meredith P G, et al. Laboratory simulation of volcano seismicity. Science, 2008, 322(5899): 249 doi: 10.1126/science.1161927 [26] Eaton D W, van der Baan M, Birkelo B, et al. Scaling relations and spectral characteristics of tensile microseisms: evidence for opening/closing cracks during hydraulic fracturing. Geophys J Int, 2014, 196(3): 1844 doi: 10.1093/gji/ggt498 [27] Mao W W, Towhata I. Monitoring of single-particle fragmentation process under static loading using acoustic emission. Appl Acoustics, 2015, 94: 39 doi: 10.1016/j.apacoust.2015.02.007 [28] Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press, 1999 [29] Zang A, Wagner C F, Dresen G. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophysl Res, 1996, 101(B8): 17507 doi: 10.1029/96JB01189 -