<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

多目標多約束混合流水車間插單重調度問題研究

何小妹 董紹華

何小妹, 董紹華. 多目標多約束混合流水車間插單重調度問題研究[J]. 工程科學學報, 2019, 41(11): 1450-1457. doi: 10.13374/j.issn2095-9389.2018.11.27.002
引用本文: 何小妹, 董紹華. 多目標多約束混合流水車間插單重調度問題研究[J]. 工程科學學報, 2019, 41(11): 1450-1457. doi: 10.13374/j.issn2095-9389.2018.11.27.002
HE Xiao-mei, DONG Shao-hua. Research on rush order insertion rescheduling problem under hybrid flow shop with multi-objective and multi-constraint[J]. Chinese Journal of Engineering, 2019, 41(11): 1450-1457. doi: 10.13374/j.issn2095-9389.2018.11.27.002
Citation: HE Xiao-mei, DONG Shao-hua. Research on rush order insertion rescheduling problem under hybrid flow shop with multi-objective and multi-constraint[J]. Chinese Journal of Engineering, 2019, 41(11): 1450-1457. doi: 10.13374/j.issn2095-9389.2018.11.27.002

多目標多約束混合流水車間插單重調度問題研究

doi: 10.13374/j.issn2095-9389.2018.11.27.002
基金項目: 國家自然科學基金資助項目(71301008)
詳細信息
    通訊作者:

    E-mail:18813127630@163.com

  • 中圖分類號: U673.2

Research on rush order insertion rescheduling problem under hybrid flow shop with multi-objective and multi-constraint

More Information
  • 摘要: 研究了多目標多階段混合流水車間的緊急訂單插單重調度問題,綜合考慮工件批量、刀具換裝時間、運輸能力等約束。先以最小化訂單完工時間和最小化總運輸時間為雙目標建立靜態初始訂單調度模型,再針對緊急訂單插單干擾,增加最小化總加工機器偏差值目標,建立三目標重調度優化模型,并分別用NSGA-II算法與融合基于事件驅動的重調度策略和重排插單策略的NSGA-III算法對兩個模型進行求解。最后,以某實際船用管類零件生產企業為案例,先對NSGA-II算法和NSGA-III算法的性能進行評估,得到NSGA-II算法更適用于解決雙目標優化問題而NSGA-III算法在解決三目標優化問題時表現更優的結論,再將所建模型與所提算法應用于該企業的十組插單案例中,所得優化率接近三分之一,驗證了實用性和有效性。

     

  • 圖  1  雙層編碼與解碼(a)和個體交叉(b)示意圖

    Figure  1.  Double encoding and decoding mechanism (a) and example of crossover operator (b)

    圖  2  生產車間布局圖

    Figure  2.  Layout of the shop

    圖  3  兩種算法所得初始訂單優化調度的Pareto最優解集. (a)NSGA-II算法; (b)NSGA-III算法

    Figure  3.  Pareto optimal solutions of the initial order: (a) NSGA-II algorithm; (b) NSGA-III algorithm

    圖  4  兩種算法所得插單后所有工件調度的Pareto最優解集. (a)NSGA-II算法; (b)NSGA-III算法

    Figure  4.  Pareto optimal solutions of all unfinished jobs: (a) NSGA-II algorithm; (b) NSGA-III algorithm

    圖  5  企業實際調度和NSGA-II算法優化調度結果的雙目標對比圖. (a)初始訂單總完工時間; (b)總運輸時間

    Figure  5.  Compare of two objectives obtained by the actual and the optimal initial order scheduling: (a) total completion time; (b) transportation time

    圖  6  企業實際調度和NSGA-III算法優化調度結果的三目標對比圖. (a)插單后總完工時間; (b)總運輸時間; (c)總機器偏差

    Figure  6.  Compare of three objectives obtained by the actual and the optimal rush order insertion rescheduling: (a) total completion time; (b) total transportation time; (c) total machine deviation

    ${P_{ijm}}$:單個工件${O_i}$在階段j的機器m上的加工時間;
    ${P_{ijm,x}}$:整批工件${O_i}_{,x}$在階段j的機器m上的加工時間;
    ${S_{ijm,x}}$:工序${O_{ij}}_{,x}$在機器m上的開始加工時間;
    ${F_{ijm,x}}$:工序${O_{ij}}_{,x}$在機器m上的完工時間;
    ${\rm{Se}}{{\rm{t}}_{ijm,x}}$:工序${O_{ij}}_{,x}$在機器m上的刀具換裝時間;
    ${\rm{Se}}{{\rm{t}}_m}$:機器m的刀具換裝時間;
    ${\rm{M}}{{\rm{T}}_{{m_1},{m_2}}}$:機器${m_1}$與${m_2}$間的運輸時間,${m_1} \in {M_j},{m_2} \in {M_{^{{(_{j{\rm{ + }}1}})}}}$;
    ${\rm{S}}{{\rm{T}}_{ij(j + 1),x,v}}$:運送設備v將整批工件${O_i}_{,x}$從階段j運到階段$(j+1)$的開始運輸時間;
    ${\rm{F}}{{\rm{T}}_{ij(j + 1),x,v}}$:運送設備v將整批工件${O_i}_{,x}$從階段j運到階段$(j+1)$的運輸完成時間;
    ${J_{{O_{a,b}} \to {O_{i,x}},jm}}$:0-1決策變量,若為1,則在階段j的機器m上,工件${O_{a,b}}$為工件${O_i}_{,x}$的上一批加工工件;
    ${K_{{O_{e,f}} \to {O_{i,x}}}}_{,j(j + 1),v}$:0-1決策變量,若為1,則運送設備v在階段j與階段$(j+1)$間,工件${O_{e,f}}$為工件${O_i}_{,x}$的上一批運送工件;
    ${X_{ijm,x}}$:0-1決策變量,若為1,則整批工件${O_i}_{,x}$在階段j的機器m上加工;
    ${T_{ij(j + 1),x,v}}$:0-1決策變量,若為1,則工序${O_{ij}}_{,x}$由運輸設備v從階段j運到階段$(j+1)$;
    ${Y_{ajm,b - ijm,x}}$:0-1決策變量,若為1,則${J_{{O_{a,b}} \to {O_{i,x}},jm}}$為1,且${O_{a,b}}$與${O_i}_{,x}$為不同種類工件,,即$a \ne i$。
    下載: 導出CSV

    表  1  零件最優生產批量和工藝路線表

    Table  1.   Optimal lot sizing and routing of each job

    零件類型最優生產批量切割彎管點焊全焊打磨泵壓
    116[1, 2][14][16, 17][18, 19][20, 21][22]
    240[3, 4, 5][15][16, 17][18, 19][20, 21][22]
    316[1, 2][6, 7][16, 17][18, 19][20, 21][22]
    464[3, 4, 5][8][16, 17][18, 19][20, 21][22]
    532[3, 4, 5][9][16, 17][18, 19][20, 21][22]
    632[3, 4, 5][10][16, 17][18, 19][20, 21][22]
    750[3, 4, 5][11, 12][16, 17][18, 19][20, 21][22]
    8100[3, 4, 5][13][16, 17][18, 19][20, 21][22]
    下載: 導出CSV

    表  2  緊急訂單插單信息表

    Table  2.   Information of the rush order insertion case

    初始訂單(2018/04/18 8:00)緊急訂單(2018/04/18 11:00)
    零件類型加工數量零件類型加工數量
    116132
    27220
    3030
    460464
    5050
    63060
    707100
    890880
    下載: 導出CSV

    表  3  NSGA-II和NSGA-III算法對初始訂單調度的評價指標對比表

    Table  3.   Comparison of three indications obtained by NSGA-II and NSGA-III that applied to solve initial order scheduling problem

    算法MIDSNSPOD
    NSGA-II912.8924790.130.63
    NSGA-III1239.2124976.660.37
    下載: 導出CSV

    表  4  NSGA-II和NSGA-III算法對緊急訂單插單重調度問題的評價指標對比表

    Table  4.   Comparison of three indications obtained by NSGA-II and NSGA-III that applied to solve ROIRP

    算法MIDSNSPOD
    NSGA-II1474.6824904.330.32
    NSGA-III548.2425036.510.68
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Gupta J N D. Two-stage, hybrid flowshop scheduling problem. J Operational Res Soc, 1988, 39(4): 359 doi: 10.1057/jors.1988.63
    [2] Meng T, Pan Q K, Li J Q, et al. An improved migrating birds optimization for an integrated lot-streaming flow shop scheduling problem. Swarm Evolutionary Comput, 2018, 38: 64 doi: 10.1016/j.swevo.2017.06.003
    [3] Rossi A. Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships. Int J Prod Economics, 2014, 153: 253 doi: 10.1016/j.ijpe.2014.03.006
    [4] Yue L, Guan Z L, Zhang L, et al. Multi-objective lotsizing and scheduling with material constraints in flexible parallel lines using a Pareto based guided artificial bee colony algorithm. Comput Ind Eng, 2019, 128: 659 doi: 10.1016/j.cie.2018.12.065
    [5] Qin H B, Fan P F, Tang H T, et al. An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint. Comput Ind Eng, 2019, 128: 458 doi: 10.1016/j.cie.2018.12.061
    [6] Vieira G E, Herrmann J W, Lin E. Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J Scheduling, 2003, 6(1): 39 doi: 10.1023/A:1022235519958
    [7] Wu S D, Storer R H, Pei C C. One-machine rescheduling heuristics with efficiency and stability as criteria. Comput Operations Res, 1993, 20(1): 1 doi: 10.1016/0305-0548(93)90091-V
    [8] Cui Z, Gu X S. A discrete group search optimizer for hybrid flow-shop scheduling problem with random breakdown. Math Probl Eng, 2014, 24: 621393
    [9] Wang K, Choi S H. A decomposition-based approach to flexible flow shop scheduling under machine breakdown. Int J Prod Res, 2012, 50(1): 215 doi: 10.1080/00207543.2011.571456
    [10] Gao K Z, Suganthan P N, Pan Q K, et al. Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowledge-Based Syst, 2016, 109: 1 doi: 10.1016/j.knosys.2016.06.014
    [11] Chiu Y F, Shih C J. Rescheduling strategies for integrating rush orders with preventive maintenance in a two-machine flow shop. Int J Prod Res, 2012, 50(20): 5783 doi: 10.1080/00207543.2011.627887
    [12] Wang D J, Liu F, Wang J J, et al. Integrated rescheduling and preventive maintenance for arrival of new jobs through evolutionary multi-objective optimization. Soft Comput, 2016, 20(4): 1635 doi: 10.1007/s00500-015-1615-7
    [13] Pei H Y, Jiang Z H, Hu J W, et al. Integrating rescheduling with preventive maintenance in the flow-shop problem under rush order. Ind Eng Manage, 2017, 22(1): 50

    裴海燕, 蔣祖華, 胡家文, 等. 插單擾動下流水線生產與維護的重調度優化. 工業工程與管理, 2017, 22(1):50
    [14] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach, Part I: solving problems with box constraints. IEEE Trans Evolutionary Comput, 2014, 18(4): 577 doi: 10.1109/TEVC.2013.2281535
    [15] Qi X T, Bard J F, Yu G. Disruption management for machine scheduling: the case of SPT schedules. Int J Prod Economics, 2006, 103(1): 166 doi: 10.1016/j.ijpe.2005.05.021
    [16] Govindan K, Jafarian A, Khodaverdi R, et al. Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int J Prod Economics, 2014, 152: 9 doi: 10.1016/j.ijpe.2013.12.028
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數:  1548
  • HTML全文瀏覽量:  998
  • PDF下載量:  66
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-27
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回