-
摘要: 通過單礦物浮選試驗、光學顯微鏡分析、E-DLVO理論計算、團聚動力學分析等研究了油酸鈉浮選體系下赤鐵礦浮選過程中的自載體作用。單礦物浮選試驗表明,粗粒赤鐵礦(?106 + 45 μm)的可浮性較好,當油酸鈉用量超過15 mg·L?1時,回收率可達到90%以上,而細粒赤鐵礦(?18 μm)的浮選回收率、浮選速率則較低;當粗?細赤鐵礦中粗粒和細粒的質量近似相等時,粗粒的“自載體”效果最強,浮選回收率增加的也最明顯,但粗粒過量則會導致粗粒對細粒赤鐵礦浮選的強化作用減弱。光學顯微鏡分析和E-DLVO理論計算表明,粗?細赤鐵礦顆粒間的相互作用能高于細粒赤鐵礦間的相互作用能,與細粒赤鐵礦相比,粗?細赤鐵礦間更容易發生團聚,這也是粗粒能夠強化細粒赤鐵礦浮選(自載體作用)的主要原因。但過量的粗粒赤鐵礦會增強其浮選過程中的“磨削、剪切”作用,導致粗粒的“自載體”效果減弱,浮選回收率降低。Abstract: Finely disseminated iron ores are a type of refractory iron ores that exist in many regions in China, where fine grind is essential to liberate iron minerals from gangue. The flotation process of fine particles is plagued with losses of recovery and selectivity, which are due to the low collision efficiencies of fine particles with bubbles, mechanical/hydraulic entrainment, and high specific surface area. Carrier flotation, which is based on the carrier effect of coarse particles, is one of the effective methods for fine particle flotation. However, scarce information is available in the literature with regard to the " self-carrier” effect and mechanism of coarse hematite particles during flotation, which are necessary and beneficial for the efficient utilization of refractory iron ore resources. In this paper, micro-flotation test, optical microscopy analysis, E-DLVO theory calculations, and particle aggregation kinetics were used to study the self-carrier effect of hematite flotation in the sodium oleate system. Flotation results show that the recovery of coarse hematite (?106 + 45 μm) could be up to 90% when the sodium oleate concentration is over 15 mg·L?1. However, for fine hematite (?18 μm) particles, the flotation recovery and flotation rate are relatively low. The highest recovery of fine-coarse hematite mixtures is obtained when the fine and coarse hematite are approximately equal in mass ratio, thereby indicating that the self-carrier effects are strongest; meanwhile, the improvement of coarse particles for flotation recovery gradually weakens with excessive coarseness in the mixtures. Optical microscopy analysis and E-DLVO theory calculations show that the interaction energies and aggregation tendencies between fine and coarse hematite particles are stronger than those among the fine hematite particles, which might be the main reasons that coarse particles could enhance the flotation performance of fine hematite particles. However, excessive coarse particles could strengthen the grinding/attrition effects during the flotation, thereby possibly weakening the self-carrier effects of coarse particles and resulting in decreased flotation recovery.
-
Key words:
- hematite /
- flotation /
- fine particles /
- self-carrier effect /
- E-DLVO theory
-
圖 5 粒度對赤鐵礦浮選的影響. (a)回收率隨油酸鈉用量變化的關系曲線(pH 9.0);(b)回收率隨浮選時間變化的關系曲線(pH 9.0;油酸鈉用量,15 mg·L?1)
Figure 5. Influence of particle size on hematite flotation: (a) the recovery as a function of sodium oleate concentration (pH 9.0); (b) the recovery as a function of flotation time (pH 9.0; sodium oleate, 15 mg·L?1)
圖 7 赤鐵礦顆粒懸浮液的光學顯微鏡圖片(pH 9.0). (a)細粒赤鐵礦(油酸鈉質量濃度:15 mg·L?1;(b)粗?細赤鐵礦(粗粒與細粒的質量比為1∶1)(油酸鈉質量濃度:15 mg·L?1);(c)細粒赤鐵礦(油酸鈉質量濃度:30 mg·L?1);(d)粗粒赤鐵礦(油酸鈉質量濃度:15 mg·L?1)
Figure 7. Optical microscopic image of treated hematite particle suspensions (pH 9.0): (a) fine hematite after conditioning with 15 mg·L?1 sodium oleate; (b) a fine and coarse hematite mixture at 1∶1 mass ratio after conditioning with 15 mg·L?1 sodium oleate; (c) fine hematite after conditioning with 30 mg·L?1 sodium oleate; (d) coarse hematite after conditioning with 30 mg·L?1 sodium oleate
表 1 單礦物化學多元素分析結果(質量分數)
Table 1. Chemical element analysis results of single minerals %
TFe FeO SiO2 Al2O3 MgO CaO P S 68.17 0.43 1.65 0.28 0.04 0.08 0.02 0.05 表 2 赤鐵礦浮選動力學的擬合方程
Table 2. Fitted equation of hematite flotation kinetics
礦樣 一級浮選動力學
擬合方程浮選速率常數,
k/min?1相關性系數,
R2粗粒赤鐵礦 $y = 99.35\left( {1 - {{\rm{e}}^{ - 0.56t}}} \right)$ 0.56 0.994 細粒赤鐵礦 $y = 54.63\left( {1 - {{\rm{e}}^{ - 0.44t}}} \right)$ 0.44 0.998 表 3 水的表面自由能
Table 3. Surface free energy of water
γL/(mJ·m?2) γLd/(mJ·m?2) γL+/(mJ·m?2) γL?/(mJ·m?2) 72.8 21.8 25.5 25.5 www.77susu.com -
參考文獻
[1] Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Met Mine, 2010(5): 55陳雯. 貧細雜難選鐵礦石選礦技術進展. 金屬礦山, 2010(5):55 [2] Ren A J, Sun C Y, Zhu Y G. Depressing capability of modified starches in the reverse flotation of quartz from hematite with cationic collectors. Chin J Eng, 2017, 39(12): 1815任愛軍, 孫傳堯, 朱陽戈. 變性淀粉在赤鐵礦陽離子反浮選脫硅中的抑制性能. 工程科學學報, 2017, 39(12):1815 [3] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0 [4] Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: Experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024 [5] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003 [6] Subrahmanyam T V, Forssberg K S E. Fine particles processing: shear-flocculation and carrier flotation-a review. Int J Miner Process, 1990, 30(3-4): 265 doi: 10.1016/0301-7516(90)90019-U [7] Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034 [8] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006 [9] Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012 [10] Yao J, Yin W, Gong E. Depressing effect of fine hydrophobic particles on magnesite reverse flotation. Int J Miner Process, 2016, 149: 84 doi: 10.1016/j.minpro.2016.02.013 [11] Hu Y H, Qiu G Z, Luo L, et al. Carrier flotation of ultrafine particle wolframite. Trans Nonferrous Met Soc China, 1994, 4(4): 10 [12] Forbes E. Shear, selective and temperature responsive flocculation: a comparison of fine particle flotation techniques. Int J Miner Process, 2011, 99(1-4): 1 doi: 10.1016/j.minpro.2011.02.001 [13] Shibata J, Fuerstenau D W. Flocculation and flotation characteristics of fine hematite with sodium oleate. Int J Miner Process, 2003, 72(1-4): 25 doi: 10.1016/S0301-7516(03)00085-1 [14] Li H, Liu M X, Liu Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Miner Eng, 2018, 119: 105 doi: 10.1016/j.mineng.2018.01.004 [15] Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993邱冠周, 胡岳華, 王淀佐. 顆粒間的相互作用和細粒浮選. 長沙: 中南工業大學出版社, 1993 [16] Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8 -