<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

赤鐵礦的自載體作用及對浮選的影響

李東 印萬忠 孫春寶 張瑞洋

李東, 印萬忠, 孫春寶, 張瑞洋. 赤鐵礦的自載體作用及對浮選的影響[J]. 工程科學學報, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004
引用本文: 李東, 印萬忠, 孫春寶, 張瑞洋. 赤鐵礦的自載體作用及對浮選的影響[J]. 工程科學學報, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004
LI Dong, YIN Wan-zhong, SUN Chun-bao, ZHANG Rui-yang. The self-carrier effect of hematite in the flotation[J]. Chinese Journal of Engineering, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004
Citation: LI Dong, YIN Wan-zhong, SUN Chun-bao, ZHANG Rui-yang. The self-carrier effect of hematite in the flotation[J]. Chinese Journal of Engineering, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004

赤鐵礦的自載體作用及對浮選的影響

doi: 10.13374/j.issn2095-9389.2018.11.05.004
基金項目: 國家自然科學基金資助項目(51904020);中國博士后科學基金資助項目(2019M660466);中央高校基本科研業務費資助項目(FRF-TP-18-082A1)
詳細信息
    通訊作者:

    E-mail:ldwdtxwd@163.com

  • 中圖分類號: TD923

The self-carrier effect of hematite in the flotation

More Information
  • 摘要: 通過單礦物浮選試驗、光學顯微鏡分析、E-DLVO理論計算、團聚動力學分析等研究了油酸鈉浮選體系下赤鐵礦浮選過程中的自載體作用。單礦物浮選試驗表明,粗粒赤鐵礦(?106 + 45 μm)的可浮性較好,當油酸鈉用量超過15 mg·L?1時,回收率可達到90%以上,而細粒赤鐵礦(?18 μm)的浮選回收率、浮選速率則較低;當粗?細赤鐵礦中粗粒和細粒的質量近似相等時,粗粒的“自載體”效果最強,浮選回收率增加的也最明顯,但粗粒過量則會導致粗粒對細粒赤鐵礦浮選的強化作用減弱。光學顯微鏡分析和E-DLVO理論計算表明,粗?細赤鐵礦顆粒間的相互作用能高于細粒赤鐵礦間的相互作用能,與細粒赤鐵礦相比,粗?細赤鐵礦間更容易發生團聚,這也是粗粒能夠強化細粒赤鐵礦浮選(自載體作用)的主要原因。但過量的粗粒赤鐵礦會增強其浮選過程中的“磨削、剪切”作用,導致粗粒的“自載體”效果減弱,浮選回收率降低。

     

  • 圖  1  赤鐵礦的X射線衍射圖

    Figure  1.  X-ray diffraction spectrum of hematite

    圖  2  赤鐵礦的粒度分布圖

    Figure  2.  Particle size distribution of hematite

    圖  3  Siwek-Top浮選柱示意圖

    Figure  3.  Schematic of Siwek-Top flotation column

    圖  4  礦漿pH值對赤鐵礦浮選的影響(油酸鈉,10 mg·L?1

    Figure  4.  Effects of slurry pH on hematite flotation (sodium oleate, 10 mg·L?1)

    圖  5  粒度對赤鐵礦浮選的影響. (a)回收率隨油酸鈉用量變化的關系曲線(pH 9.0);(b)回收率隨浮選時間變化的關系曲線(pH 9.0;油酸鈉用量,15 mg·L?1

    Figure  5.  Influence of particle size on hematite flotation: (a) the recovery as a function of sodium oleate concentration (pH 9.0); (b) the recovery as a function of flotation time (pH 9.0; sodium oleate, 15 mg·L?1)

    圖  6  粗?細赤鐵礦中粗粒的含量對浮選的影響(pH 9.0;油酸鈉,15 mg·L?1)

    Figure  6.  Effect of coarse particle mass fraction on the final recovery of fine-coarse hematite mixtures (pH 9.0; sodium oleate, 15 mg·L?1)

    圖  7  赤鐵礦顆粒懸浮液的光學顯微鏡圖片(pH 9.0). (a)細粒赤鐵礦(油酸鈉質量濃度:15 mg·L?1;(b)粗?細赤鐵礦(粗粒與細粒的質量比為1∶1)(油酸鈉質量濃度:15 mg·L?1);(c)細粒赤鐵礦(油酸鈉質量濃度:30 mg·L?1);(d)粗粒赤鐵礦(油酸鈉質量濃度:15 mg·L?1

    Figure  7.  Optical microscopic image of treated hematite particle suspensions (pH 9.0): (a) fine hematite after conditioning with 15 mg·L?1 sodium oleate; (b) a fine and coarse hematite mixture at 1∶1 mass ratio after conditioning with 15 mg·L?1 sodium oleate; (c) fine hematite after conditioning with 30 mg·L?1 sodium oleate; (d) coarse hematite after conditioning with 30 mg·L?1 sodium oleate

    圖  8  赤鐵礦的表面性質. (a) zeta電位與pH值的關系曲線; (b) 接觸角隨時間變化的關系曲線

    Figure  8.  Surface characteristics of hematite: (a) zeta potentials in the absence and presence of sodium oleate as a function of pH value; (b) the contact angle in distilled water as a function of time

    圖  9  赤鐵礦顆粒間總的相互作用能VTED(粗粒赤鐵礦和細粒赤鐵礦的直徑分別取70 μm和10 μm)

    Figure  9.  Total interaction energy (VTED) between hematite particles of different sizes (the diameter of fine and coarse particles is assumed as 10 and 70 μm, respectively)

    圖  10  粗粒赤鐵礦“自載體作用”示意圖

    Figure  10.  Schematic of coarse hematite self-carrier effect

    表  1  單礦物化學多元素分析結果(質量分數)

    Table  1.   Chemical element analysis results of single minerals %

    TFeFeOSiO2Al2O3MgOCaOPS
    68.170.431.650.280.040.080.020.05
    下載: 導出CSV

    表  2  赤鐵礦浮選動力學的擬合方程

    Table  2.   Fitted equation of hematite flotation kinetics

    礦樣一級浮選動力學
    擬合方程
    浮選速率常數,
    k/min?1
    相關性系數,
    R2
    粗粒赤鐵礦$y = 99.35\left( {1 - {{\rm{e}}^{ - 0.56t}}} \right)$0.560.994
    細粒赤鐵礦$y = 54.63\left( {1 - {{\rm{e}}^{ - 0.44t}}} \right)$0.440.998
    下載: 導出CSV

    表  3  水的表面自由能

    Table  3.   Surface free energy of water

    γL/(mJ·m?2)γLd/(mJ·m?2)γL+/(mJ·m?2)γL?/(mJ·m?2)
    72.821.825.525.5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Met Mine, 2010(5): 55

    陳雯. 貧細雜難選鐵礦石選礦技術進展. 金屬礦山, 2010(5):55
    [2] Ren A J, Sun C Y, Zhu Y G. Depressing capability of modified starches in the reverse flotation of quartz from hematite with cationic collectors. Chin J Eng, 2017, 39(12): 1815

    任愛軍, 孫傳堯, 朱陽戈. 變性淀粉在赤鐵礦陽離子反浮選脫硅中的抑制性能. 工程科學學報, 2017, 39(12):1815
    [3] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [4] Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: Experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024
    [5] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
    [6] Subrahmanyam T V, Forssberg K S E. Fine particles processing: shear-flocculation and carrier flotation-a review. Int J Miner Process, 1990, 30(3-4): 265 doi: 10.1016/0301-7516(90)90019-U
    [7] Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034
    [8] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [9] Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012
    [10] Yao J, Yin W, Gong E. Depressing effect of fine hydrophobic particles on magnesite reverse flotation. Int J Miner Process, 2016, 149: 84 doi: 10.1016/j.minpro.2016.02.013
    [11] Hu Y H, Qiu G Z, Luo L, et al. Carrier flotation of ultrafine particle wolframite. Trans Nonferrous Met Soc China, 1994, 4(4): 10
    [12] Forbes E. Shear, selective and temperature responsive flocculation: a comparison of fine particle flotation techniques. Int J Miner Process, 2011, 99(1-4): 1 doi: 10.1016/j.minpro.2011.02.001
    [13] Shibata J, Fuerstenau D W. Flocculation and flotation characteristics of fine hematite with sodium oleate. Int J Miner Process, 2003, 72(1-4): 25 doi: 10.1016/S0301-7516(03)00085-1
    [14] Li H, Liu M X, Liu Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Miner Eng, 2018, 119: 105 doi: 10.1016/j.mineng.2018.01.004
    [15] Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993

    邱冠周, 胡岳華, 王淀佐. 顆粒間的相互作用和細粒浮選. 長沙: 中南工業大學出版社, 1993
    [16] Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  1210
  • HTML全文瀏覽量:  709
  • PDF下載量:  50
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-05
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回