<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋼中液態夾雜物聚并行為的數學物理模擬

陳開來 王德永 屈天鵬 田俊 王慧華

陳開來, 王德永, 屈天鵬, 田俊, 王慧華. 鋼中液態夾雜物聚并行為的數學物理模擬[J]. 工程科學學報, 2019, 41(10): 1280-1287. doi: 10.13374/j.issn2095-9389.2018.11.02.001
引用本文: 陳開來, 王德永, 屈天鵬, 田俊, 王慧華. 鋼中液態夾雜物聚并行為的數學物理模擬[J]. 工程科學學報, 2019, 41(10): 1280-1287. doi: 10.13374/j.issn2095-9389.2018.11.02.001
CHEN Kai-lai, WANG De-yong, QU Tian-peng, TIAN Jun, WANG Hui-hua. Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel[J]. Chinese Journal of Engineering, 2019, 41(10): 1280-1287. doi: 10.13374/j.issn2095-9389.2018.11.02.001
Citation: CHEN Kai-lai, WANG De-yong, QU Tian-peng, TIAN Jun, WANG Hui-hua. Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel[J]. Chinese Journal of Engineering, 2019, 41(10): 1280-1287. doi: 10.13374/j.issn2095-9389.2018.11.02.001

鋼中液態夾雜物聚并行為的數學物理模擬

doi: 10.13374/j.issn2095-9389.2018.11.02.001
基金項目: 

國家自然科學基金資助項目 51674172

國家自然科學基金資助項目 51874203

國家自然科學基金資助項目 51774208

詳細信息
    通訊作者:

    屈天鵬, E-mail: qutianpeng@suda.edu.cn

  • 中圖分類號: TF704.7

Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel

More Information
  • 摘要: 基于相似原理,采用水模擬鋼液,用有機試劑模擬鋼液中液態非金屬夾雜物,同時采用數值仿真方法共同研究了夾雜物種類、兩相間界面張力及黏度對于液滴聚并過程的影響規律.結果表明,夾雜物液滴間的聚合趨勢與其自身的物理性質有緊密聯系,其中液滴相與連續相之間的界面張力會促進其相互聚并,而液滴相的黏度則正相反,在液滴聚并過程中起抑制作用.因此,通過改變液態夾雜物與高溫鋼液之間的界面參數以及黏度參數,有望達到聚合或分散的控制目標,進而實現夾雜物尺寸的靈活控制.

     

  • 圖  1  鄰苯二甲酸二辛酯液滴的初始形貌(a)、輪廓擬合(b)、粒徑分布(c)和所對應的實際液態夾雜粒徑分布(d)

    Figure  1.  Initial morphology (a), fitted contour (b), size distribution of DOP particles (c), and the corresponding size distribution of actual liquid inclusions in molten steel(d)

    圖  2  物理模擬實驗裝置示意圖

    1―鋼包模型; 2―底吹攪拌; 3―頂面環形吹氣; 4―滴定管; 5―頂部注水; 6―錐形瓶收集; 7―靜置分層

    Figure  2.  Schematic diagram of experimental apparatus

    圖  3  液滴對聚并模型示意圖

    Figure  3.  Schematic diagram of coalescence model between two drops

    圖  4  三種模擬夾雜物上浮去除率隨時間的變化

    Figure  4.  Variation curves of the removal rates of different model inclusions over time

    圖  5  液滴對聚并過程體積分數、壓力云圖與速度場分布

    Figure  5.  Volume fraction, total pressure, and velocity field during coalescence process

    圖  6  彎曲液面的附加壓力

    Figure  6.  Additional pressure of curved liquid surface

    圖  7  不同界面張力條件下液滴聚并現象形貌(μ=0.05 Pa ·s)

    Figure  7.  Coalescence phenomena of different interfacial tensions (μ=0.05 Pa ·s)

    圖  8  聚并時間與界面張力關系

    Figure  8.  Relationship between coalescence time and interfacial tension

    圖  9  不同黏度條件下液滴聚并過程(γ=50 mN ·m-1)

    Figure  9.  Coalescence phenomena under different viscosities (γ=50 mN ·m-1)

    圖  10  聚并時間與液滴黏度的關系

    Figure  10.  Relationship between coalescence time and droplet viscosity

    表  1  原型和模型及其介質的主要參數

    Table  1.   Main parameters of prototype ladle, model, and the medium

    項目 鋼包上口直徑/mm 鋼包下口直徑/mm 熔池深度/mm 噴嘴直徑/mm 密度/(kg·m-3) 吹氣量/(L·min-1)
    液體 夾雜物 氣體1)
    原型 3660 3364 4095 100 7.1×103 3.9×103 1.784(Ar) 800
    模型 245 215 273 2.62) 1×103 0.98×103(二辛酯) 1.977(CO2) 0.5
    注:1)溫度T=273 K,壓強p=1.013×105 Pa. 2)實際吹氣孔為狹縫型,長5.3 mm,寬1 mm,按同等面積折合成圓形噴嘴直徑為2.6 mm.
    下載: 導出CSV

    表  2  液態夾雜模擬試劑部分物理性質

    Table  2.   Partial physical properties of reagents chosen to simulate liquid inclusion

    序號 名稱 相對密度/(g·cm-3) 黏度/(mPa·s) 表面張力/(mN·m-1) 與水界面張力/(mN·m-1)
    1 鄰苯二甲酸二辛酯 0.98 9.70 27.701)
    2 苯乙醚 0.97 1.16 29.80 29.40[14]
    3 二甲基硅油 0.97 500 21.20 35.26[15]
    注:1)由DCAT21動態接觸角測量儀測得.
    下載: 導出CSV

    表  3  數值模擬計算條件設置

    Table  3.   Parameter setting for numerical calculation

    序號 密度/(kg·m-3) 黏度/(Pa·s) 界面張力/(mN·m-1)
    液滴 液滴 液滴與水
    1 950 998.2 0.05 0.001003 10
    2 950 998.2 0.05 0.001003 20
    3 950 998.2 0.05 0.001003 50
    4 950 998.2 0.05 0.001003 70
    5 950 998.2 0.05 0.001003 90
    6 950 998.2 0.01 0.001003 50
    7 950 998.2 0.10 0.001003 50
    8 950 998.2 0.15 0.001003 50
    9 950 998.2 0.20 0.001003 50
    10 950 998.2 0.25 0.001003 50
    11 950 998.2 0.30 0.001003 50
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhu M Y, Xiao Z Q. Physical and Numerical Simulation of Refining Process of Molten Steel. Beijing: Metallurgical Industry Press, 1998

    朱苗勇, 蕭澤強. 鋼的精煉過程數學物理模擬. 北京: 冶金工業出版社, 1998
    [2] Yao J, Qu X H, He X B, et al. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel. Int J Miner Metall Mater, 2012, 19(7): 608 doi: 10.1007/s12613-012-0602-6
    [3] Xu Y T, Chen Z P, Yang B Q. Study of large size Ds type inclusions in bearing steel. Steelmaking, 2016, 32(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604008.htm

    徐迎鐵, 陳兆平, 楊寶權. 軸承鋼Ds類大顆粒夾雜物研究. 煉鋼, 2016, 32(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604008.htm
    [4] Zhu T H, Chen H, Liu Y, et al. Effect of Al on stomata, inclusion and impact toughness in rail surfacing weld. Weld Join, 2011(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201108009.htm

    朱藤輝, 陳輝, 劉艷, 等. Al對鋼軌堆焊焊縫中氣孔、夾雜物及沖擊韌性的影響. 焊接, 2011(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201108009.htm
    [5] Pamnani R, Jayakumar T, Vasudevan M, et al. Investigations on the impact toughness of HSLA steel arc welded joints. J Manuf Processes, 2016, 21: 75 doi: 10.1016/j.jmapro.2015.11.007
    [6] Taniguchi S, Kikuchi A, Ise T, et al. Model experiment on the coagulation of inclusion particles in liquid steel. ISIJ Int, 1996, 36(Suppl): S117 doi: 10.2355/isijinternational.36.Suppl_S117
    [7] Zheng S G, Zhu M Y. Physical modeling of inclusion behavior in ladle with eccentric bottom blowing argon. J Iron Steel Res, 2008, 20(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806006.htm

    鄭淑國, 朱苗勇. 偏心底吹氬鋼包內夾雜物行為的物理模擬. 鋼鐵研究學報, 2008, 20(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806006.htm
    [8] Arai H, Matsumoto K, Shimasaki S, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
    [9] Cho J S, Lee H G. Cold model study on inclusion removal from liquid steel using fine gas bubbles. ISIJ Int, 2001, 41(2): 151 doi: 10.2355/isijinternational.41.151
    [10] Mhatre S, Deshmukh S, Thaokar R M. Electrocoalescence of a drop pair. Phys Fluids, 2015, 27(9): 092106 doi: 10.1063/1.4931592
    [11] Lou W T, Zhu M Y. Numerical simulations of inclusion behavior in gas-stirred ladles. Metall Mater Trans B, 2013, 44(3): 762 doi: 10.1007/s11663-013-9802-3
    [12] Chen G J, He S P, Li Y G, et al. Modeling dynamics of agglomeration, transport, and removal of Al2O3 clusters in the Rheinsahl-Heraeus reactor based on the coupled computational fluid dynamics-population balance method model. Ind Eng Chem Res, 2016, 55(25): 7030 doi: 10.1021/acs.iecr.6b00586
    [13] Guo L F, Li H, Wang Y, et al. Simulation on agglomeration of liquid inclusion particles in steel based on VOF model. Adv Mater Res, 2012, 538-541: 525 doi: 10.4028/www.scientific.net/AMR.538-541.525
    [14] Demond A H, Lindner A S. Estimation of interfacial tension between organic liquids and water. Environ Sci Technol, 1993, 27(12): 2318 doi: 10.1021/es00048a004
    [15] Peters F, Arabali D. Interfacial tension between oil and water measured with a modified contour method. Colloids Surf A, 2013, 426: 1 doi: 10.1016/j.colsurfa.2013.03.010
    [16] Sahai Y, Emi T. Criteria for water modeling of melt flow and inclusion removal in continuous casting tundishes. ISIJ Int, 1996, 36(9): 1166 doi: 10.2355/isijinternational.36.1166
    [17] Liu S P, Li T M, Jia S Y. Coalescence between two small liquid drops. Acta Phys-Chim Sin, 1995, 11(11): 997 doi: 10.3866/PKU.WHXB19951108

    劉世平, 李佟茗, 賈紹義. 兩個液滴之間的聚并. 物理化學學報, 1995, 11(11): 997 doi: 10.3866/PKU.WHXB19951108
    [18] Liu S P, Li T M, Zhang T Y. Drop coalescence in turbulent dispersions. CIESC J, 1998, 49(4): 409 doi: 10.3321/j.issn:0438-1157.1998.04.003

    劉世平, 李佟茗, 張騰燕. 湍流分散系統中的液滴聚并. 化工學報, 1998, 49(4): 409 doi: 10.3321/j.issn:0438-1157.1998.04.003
    [19] Liu S P, Li D M. Drop coalescence in turbulent dispersions. Chem Eng Sci, 1999, 54(23): 5667 doi: 10.1016/S0009-2509(99)00100-1
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  1673
  • HTML全文瀏覽量:  353
  • PDF下載量:  54
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-02
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回