Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel
-
摘要: 基于相似原理,采用水模擬鋼液,用有機試劑模擬鋼液中液態非金屬夾雜物,同時采用數值仿真方法共同研究了夾雜物種類、兩相間界面張力及黏度對于液滴聚并過程的影響規律.結果表明,夾雜物液滴間的聚合趨勢與其自身的物理性質有緊密聯系,其中液滴相與連續相之間的界面張力會促進其相互聚并,而液滴相的黏度則正相反,在液滴聚并過程中起抑制作用.因此,通過改變液態夾雜物與高溫鋼液之間的界面參數以及黏度參數,有望達到聚合或分散的控制目標,進而實現夾雜物尺寸的靈活控制.Abstract: In steelmaking process, nonmetallic inclusions are often considered to be detrimental to the mechanical properties and product quality of steel as they influence the microstructure of the steel matrix to a large extent, and thus, much industrial efforts are being made to promote inclusion removal by upward flotation. From this point of view, inclusions with large size are favorable; however, quality problems or mechanical defects are more likely to happen if some of them remain in the steel. In addition, fine nonmetallic inclusions can be utilized as nucleation sites of acicular ferrite during phase transformation to improve the steel strength by promoting the formation of a fine-grained structure; this procedure is known as oxide metallurgy. In both cases, the key issue is to control the size of inclusion particles. The main factor affecting inclusion size is the collision, agglomeration, and coalescence behavior of inclusions in the molten steel. Interfacial characteristics between inclusions and steel melts are known to have a significant influence on this coalescence behavior. To analyze this influence mechanism in depth, physical and numerical simulation methods were applied to investigate the effects of inclusion type, interfacial tension, and viscosity on droplet coalescence. Based on the similarity principle, water and organic reagents were chosen to simulate molten steel and liquid nonmetallic inclusions, respectively, in the physical modeling part. The results indicate that the coalescence tendency of inclusion droplets is closely related to the physical properties of the droplets. The interfacial tension between the droplet phase and the continuous phase promotes the mutual aggregation of droplets, while the viscosity of droplets plays an inhibitory role during the aggregation process. Therefore, it is feasible to achieve aggregation or dispersion of inclusions in liquid steel by changing interfacial or viscosity parameters, thereby realizing flexible control of the inclusions particle size.
-
表 1 原型和模型及其介質的主要參數
Table 1. Main parameters of prototype ladle, model, and the medium
項目 鋼包上口直徑/mm 鋼包下口直徑/mm 熔池深度/mm 噴嘴直徑/mm 密度/(kg·m-3) 吹氣量/(L·min-1) 液體 夾雜物 氣體1) 原型 3660 3364 4095 100 7.1×103 3.9×103 1.784(Ar) 800 模型 245 215 273 2.62) 1×103 0.98×103(二辛酯) 1.977(CO2) 0.5 注:1)溫度T=273 K,壓強p=1.013×105 Pa. 2)實際吹氣孔為狹縫型,長5.3 mm,寬1 mm,按同等面積折合成圓形噴嘴直徑為2.6 mm. 表 2 液態夾雜模擬試劑部分物理性質
Table 2. Partial physical properties of reagents chosen to simulate liquid inclusion
表 3 數值模擬計算條件設置
Table 3. Parameter setting for numerical calculation
序號 密度/(kg·m-3) 黏度/(Pa·s) 界面張力/(mN·m-1) 液滴 水 液滴 水 液滴與水 1 950 998.2 0.05 0.001003 10 2 950 998.2 0.05 0.001003 20 3 950 998.2 0.05 0.001003 50 4 950 998.2 0.05 0.001003 70 5 950 998.2 0.05 0.001003 90 6 950 998.2 0.01 0.001003 50 7 950 998.2 0.10 0.001003 50 8 950 998.2 0.15 0.001003 50 9 950 998.2 0.20 0.001003 50 10 950 998.2 0.25 0.001003 50 11 950 998.2 0.30 0.001003 50 www.77susu.com -
參考文獻
[1] Zhu M Y, Xiao Z Q. Physical and Numerical Simulation of Refining Process of Molten Steel. Beijing: Metallurgical Industry Press, 1998朱苗勇, 蕭澤強. 鋼的精煉過程數學物理模擬. 北京: 冶金工業出版社, 1998 [2] Yao J, Qu X H, He X B, et al. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel. Int J Miner Metall Mater, 2012, 19(7): 608 doi: 10.1007/s12613-012-0602-6 [3] Xu Y T, Chen Z P, Yang B Q. Study of large size Ds type inclusions in bearing steel. Steelmaking, 2016, 32(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604008.htm徐迎鐵, 陳兆平, 楊寶權. 軸承鋼Ds類大顆粒夾雜物研究. 煉鋼, 2016, 32(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604008.htm [4] Zhu T H, Chen H, Liu Y, et al. Effect of Al on stomata, inclusion and impact toughness in rail surfacing weld. Weld Join, 2011(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201108009.htm朱藤輝, 陳輝, 劉艷, 等. Al對鋼軌堆焊焊縫中氣孔、夾雜物及沖擊韌性的影響. 焊接, 2011(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201108009.htm [5] Pamnani R, Jayakumar T, Vasudevan M, et al. Investigations on the impact toughness of HSLA steel arc welded joints. J Manuf Processes, 2016, 21: 75 doi: 10.1016/j.jmapro.2015.11.007 [6] Taniguchi S, Kikuchi A, Ise T, et al. Model experiment on the coagulation of inclusion particles in liquid steel. ISIJ Int, 1996, 36(Suppl): S117 doi: 10.2355/isijinternational.36.Suppl_S117 [7] Zheng S G, Zhu M Y. Physical modeling of inclusion behavior in ladle with eccentric bottom blowing argon. J Iron Steel Res, 2008, 20(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806006.htm鄭淑國, 朱苗勇. 偏心底吹氬鋼包內夾雜物行為的物理模擬. 鋼鐵研究學報, 2008, 20(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806006.htm [8] Arai H, Matsumoto K, Shimasaki S, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965 [9] Cho J S, Lee H G. Cold model study on inclusion removal from liquid steel using fine gas bubbles. ISIJ Int, 2001, 41(2): 151 doi: 10.2355/isijinternational.41.151 [10] Mhatre S, Deshmukh S, Thaokar R M. Electrocoalescence of a drop pair. Phys Fluids, 2015, 27(9): 092106 doi: 10.1063/1.4931592 [11] Lou W T, Zhu M Y. Numerical simulations of inclusion behavior in gas-stirred ladles. Metall Mater Trans B, 2013, 44(3): 762 doi: 10.1007/s11663-013-9802-3 [12] Chen G J, He S P, Li Y G, et al. Modeling dynamics of agglomeration, transport, and removal of Al2O3 clusters in the Rheinsahl-Heraeus reactor based on the coupled computational fluid dynamics-population balance method model. Ind Eng Chem Res, 2016, 55(25): 7030 doi: 10.1021/acs.iecr.6b00586 [13] Guo L F, Li H, Wang Y, et al. Simulation on agglomeration of liquid inclusion particles in steel based on VOF model. Adv Mater Res, 2012, 538-541: 525 doi: 10.4028/www.scientific.net/AMR.538-541.525 [14] Demond A H, Lindner A S. Estimation of interfacial tension between organic liquids and water. Environ Sci Technol, 1993, 27(12): 2318 doi: 10.1021/es00048a004 [15] Peters F, Arabali D. Interfacial tension between oil and water measured with a modified contour method. Colloids Surf A, 2013, 426: 1 doi: 10.1016/j.colsurfa.2013.03.010 [16] Sahai Y, Emi T. Criteria for water modeling of melt flow and inclusion removal in continuous casting tundishes. ISIJ Int, 1996, 36(9): 1166 doi: 10.2355/isijinternational.36.1166 [17] Liu S P, Li T M, Jia S Y. Coalescence between two small liquid drops. Acta Phys-Chim Sin, 1995, 11(11): 997 doi: 10.3866/PKU.WHXB19951108劉世平, 李佟茗, 賈紹義. 兩個液滴之間的聚并. 物理化學學報, 1995, 11(11): 997 doi: 10.3866/PKU.WHXB19951108 [18] Liu S P, Li T M, Zhang T Y. Drop coalescence in turbulent dispersions. CIESC J, 1998, 49(4): 409 doi: 10.3321/j.issn:0438-1157.1998.04.003劉世平, 李佟茗, 張騰燕. 湍流分散系統中的液滴聚并. 化工學報, 1998, 49(4): 409 doi: 10.3321/j.issn:0438-1157.1998.04.003 [19] Liu S P, Li D M. Drop coalescence in turbulent dispersions. Chem Eng Sci, 1999, 54(23): 5667 doi: 10.1016/S0009-2509(99)00100-1 -