<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

浸礦微生物氟抑制機理及鐵的競爭絡合作用

李想 溫建康 莫曉蘭 武彪 尚鶴 武名麟 王淀佐 楊洪英

李想, 溫建康, 莫曉蘭, 武彪, 尚鶴, 武名麟, 王淀佐, 楊洪英. 浸礦微生物氟抑制機理及鐵的競爭絡合作用[J]. 工程科學學報, 2018, 40(10): 1223-1230. doi: 10.13374/j.issn2095-9389.2018.10.009
引用本文: 李想, 溫建康, 莫曉蘭, 武彪, 尚鶴, 武名麟, 王淀佐, 楊洪英. 浸礦微生物氟抑制機理及鐵的競爭絡合作用[J]. 工程科學學報, 2018, 40(10): 1223-1230. doi: 10.13374/j.issn2095-9389.2018.10.009
LI Xiang, WEN Jian-kang, MO Xiao-lan, WU Biao, SHANG He, WU Ming-lin, WANG Dian-zuo, YANG Hong-ying. Mechanism of fluoride inhibition on bioleaching bacteria and competitive complexation of ferric ions[J]. Chinese Journal of Engineering, 2018, 40(10): 1223-1230. doi: 10.13374/j.issn2095-9389.2018.10.009
Citation: LI Xiang, WEN Jian-kang, MO Xiao-lan, WU Biao, SHANG He, WU Ming-lin, WANG Dian-zuo, YANG Hong-ying. Mechanism of fluoride inhibition on bioleaching bacteria and competitive complexation of ferric ions[J]. Chinese Journal of Engineering, 2018, 40(10): 1223-1230. doi: 10.13374/j.issn2095-9389.2018.10.009

浸礦微生物氟抑制機理及鐵的競爭絡合作用

doi: 10.13374/j.issn2095-9389.2018.10.009
基金項目: 

國家自然科學基金資助項目(51404031)

詳細信息
  • 中圖分類號: TF88

Mechanism of fluoride inhibition on bioleaching bacteria and competitive complexation of ferric ions

  • 摘要: 含氟礦石中生物浸出技術推廣應用存在瓶頸,究其原因在于伴隨含氟脈石礦物溶解,氟對浸礦微生物有較強的抑制作用.本研究利用氟的水化學特性,通過添加可形成穩定絡合物的物質來轉換F離子存在形態,進而使浸礦微生物可以耐受高氟環境.本文系統研究了氟對細菌的抑制機理,明確了氟的真實毒性形態HF,發現了氟對細菌存在跨膜抑制作用,氟脅迫條件下,干細胞內氟離子質量分數明顯高于無氟對照組達到18%以上.選擇在生物冶金體系中常見Fe3+做為研究對象,研究了Fe3+對F-的絡合解毒作用,熱力學分析結果可知,Fe3+可以與HF發生一級競爭絡合反應,破壞HF絡合結構.在鐵離子存在條件下,細菌最高可以耐受F-質量濃度1.0 g·L-1的環境下生長.鐵氟絡合形態分析可知,只有當培養基中Fe3+質量濃度5倍過量于F-質量濃度,細菌才能正常生長,對應的FeF2+在氟化物中質量分數達45%時,而游離氟離子濃度為2.87×10-5 mol·L-1.絡合機理實驗結果表明,根據配位化學原理,隨著F-/Fe3+濃度比的減小,配體濃度相對較低,氟與鐵的絡合物向低配位方向移動,可以通過調整培養基中的氟鐵濃度比來調整氟鐵絡合產物,使細菌在高氟環境中生長成為可能.

     

  • [1] Peng Z J,Yu R L, Qiu G Z, et al. Really active form of fluorine toxicity affecting Acidithiobacillus ferrooxidans activity in bioleaching uranium. Trans Nonferrous Met Soc China, 2013, 23(3):812
    [3] Brierley J A, Kuhn M C. Fluoride toxicity in a chalcocite bioleach heap process. Hydrometallurgy, 2010, 104(3-4):410
    [4] Razzell W E, Trussell P C. Isolation and properties of an iron-oxidizing Thiobacillus. J Bacteriol, 1963, 85(3):595
    [5] Suzuki I, Lee D, Mackay B, et al. Effect of various ions, pH and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol, 1999, 65(11):5163
    [6] Owusu-Agyeman I, Jeihanipour A, Luxbacher T, et al. Implications of humic acid, inorganic carbon and speciation on fluoride retention mechanisms in nanofiltration and reverse osmosis. J Membr Sci, 2017, 528:82
    [7] Rodrigues M L M, Lopes K C S, Leôncio H C, et al. Bioleaching of fluoride-bearing secondary copper sulphides:column experiments with Acidithiobacillus ferrooxidans. Chem Eng J, 2016, 284:1279
    [10] Bibi S, Kamran M A, Sultana J, et al. Occurrence and methods to remove arsenic and fluoride contamination in water. Environ Chem Lett, 2017, 15(1):125
    [11] Magesh N S, Chandrasekar N, Elango L. Occurrence and distribution of fluoride in the groundwater of the Tamiraparani River basin, South India:a geostatistical modeling approach. Environ Earth Sci, 2016, 75(23):1483
    [12] Shen J J, Schäfer A. Removal of fluoride and uranium by nanofiltration and reverse osmosis:a review. Chemosphere, 2014, 117:679
    [13] Ma L Y, Wang X J, Tao J M, et al. Differential fluoride tolerance between sulfur-and ferrous iron-grown Acidithiobacillus ferrooxidans and its mechanism analysis. Biochem Eng J, 2017, 119:59
    [15] Yasuda E Y, Koroishi E T, Vargas J A V, et al. Dissolution evaluation of coquina, Part 1:carbonated-brine continuous injection using computed tomography and PHREEQC. Energy Fuels, 2018, 32(4):5289
    [16] Guneriusson L, SandströmÅ, Holmgren A, et al. Jarosite inclusion of fluoride and its potential significance to bioleaching of sulphide minerals. Hydrometallurgy, 2009, 96(1-2):108
  • 加載中
計量
  • 文章訪問數:  683
  • HTML全文瀏覽量:  440
  • PDF下載量:  16
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-18

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com