Optimization of performance and composition for glass ceramics prepared from mixing molten slags
-
摘要: 以電爐鎳鐵渣和普通高爐渣為主要原料,采用Petrurgic一步法制備了微晶玻璃,并結合力學性能測試,對樣品進行了X射線衍射(XRD)、掃描電鏡(SEM)等分析,討論了電爐鎳鐵渣和普通高爐渣配比、Mg2+含量以及晶核劑TiO2對成品微觀結構及性能的影響規律.結果表明:將熔渣冷卻至900℃結晶和650℃退火,能夠制備出性能優良的微晶玻璃.當Mg2+含量增加且析出晶體為單一輝石族礦物時,微晶玻璃具有較高的力學性能.電爐鎳鐵渣或Mg2+含量增加,會導致其輝石族礦物含量增加,當兩種渣混合摻量達到90%(鎳鐵渣質量分數50%,高爐渣質量分數為40%)且外摻2% MgO時,所制備微晶玻璃結構致密,僅含有單一輝石族礦物,包括透輝石、普通輝石和斜頑輝石,從而具有最優的力學性能,其抗折強度達210 MPa,抗壓強度達1162 MPa.電爐鎳鐵渣或者MgO含量進一步增加,會導致鎂橄欖石析出,此時微晶玻璃的力學性能顯著下降.TiO2含量的增加不改變微晶玻璃晶體種類,合適摻入TiO2(本實驗為質量分數2%)能夠增強透輝石含量,提升性能;但過量摻入會抑制晶體生長,導致其性能下降.Abstract: The direct preparation of materials from high-temperature slag is an effective way for the integrated utilization of slags and their thermal energy. In this paper, with ferronickel slags and blast furnace slags as the main raw materials, glass ceramics were prepared by the Petrurgic method, a one-step heat-treatment method by direct crystallization of the slag melt during its cooling process. The ratio of ferronickel slags and blast furnace slags, Mg2+ content, and the effect of nucleating agent TiO2 on the microstructure and properties of the products were analyzed by X-ray diffraction, scanning electron microscopy, and mechanical property test. The results show that glass ceramics with excellent properties can be prepared by crystallization at 900℃ and annealing at 650℃ for slag melts during the cooling process. When the content of Mg2+ increased, and the precipitated crystal was a single-pyroxene-group mineral, the glass ceramics exhibited the highest mechanical properties. The content of pyroxene group mineral increased with the increasing ferronickel slag or MgO content. When the content of the two slags reached 90% (50% ferronickel slags and 40% blast furnace slags) with the addition of 2% MgO, the prepared glass ceramics presented a compact structure containing single-pyroxene-group minerals, including diopside, ordinary pyroxene, and clinopyroxene, and the best mechanical properties with flexural strength of 210 MPa and compressive strength of 1162 MPa. However, the further increase in ferronickel slag or MgO content led to the precipitation of forsterite, which significantly deteriorated the mechanical properties of glass ceramics. The increasing content of TiO2 caused no change in the type of crystals in the glass ceramics. Appropriate doping (2% in the experiments) increased the content of diopside, but excessive doping inhibited the crystal growth and reduced its performance.
-
Key words:
- ferronickel slags /
- blast furnace slags /
- glass-ceramic /
- pyroxene group /
- forsterite
-
圖 1 微晶玻璃不同制備工藝比較.(a)成核溫度和析晶溫度區域極少疊加下的溫度與成核/晶體生長速率變化關系; (b)兩步法熱處理制度;(c) 成核溫度和析晶溫度區域大部分疊加的溫度與成核/晶體生長速率變化關系;(d) Petrurgic法熱處理制度
Figure 1. Comparison of different heat treatment processes of glass ceramics: (a) temperature dependence of the nucleation and growth rates with negligible overlap; (b) two step method; (c) temperature dependence of the nucleation and growth rates with significant overlap of the secondary nuclei rate and the growth rate curves; (d) Petrurgic method
表 1 樣品化學組成(質量分數)
Table 1. Chemical composition of samples?
% 樣品 高爐渣 電爐鎳鐵渣 石英砂 MgCO3 TiO2 CaO SiO2 Al2O3 MgO TiO2 Fe2O3 其他 S1 50 40 10 20.39 45.06 9.98 16.42 0.47 5.48 2.2 S2 40 50 10 16.71 46.87 8.79 18.23 0.40 6.60 2.4 S3 30 60 10 13.02 48.68 7.60 20.05 0.33 7.71 2.61 S4 40 50 10 2① 16.38 45.95 8.62 19.84 0.39 6.47 2.35 S5 40 50 10 4① 16.07 45.07 8.45 21.37 0.38 6.35 2.31 S6 50 40 10 2 19.99 44.18 9.78 16.10 2.42 5.37 2.16 S7 50 40 10 4 19.61 43.32 9.60 15.79 4.30 5.27 2.11 注:①和②表示換算后的MgO質量分數. 表 2 樣品與國標要求性能的對比
Table 2. Comparison between performance of different samples and requirement of standard
表 3 熔渣改質顯熱和補熱對比
Table 3. Contrast between sensible heat and heat compensation of slag
樣品 熔渣顯熱,Qs/J 改質劑吸熱,Qen/J 50%高爐熔渣+40%鎳鐵電爐熔渣+10%冷態石英砂 26928 10320 40%高爐熔渣+50%鎳鐵電爐熔渣+10%冷態石英砂 24480 10568 30%高爐熔渣+60%鎳鐵電爐熔渣+10%冷態石英砂 18360 11193 40%高爐熔渣+50%鎳鐵電爐熔渣+10%冷態石英砂+外加2%MgO 18348 14479 www.77susu.com -
參考文獻
[1] Wang Y W, Gui Y L, Song C Y, et al. Research progress in glass ceramics with the blast furnace slag. Mult Util Min Res, 2018(2): 1 doi: 10.3969/j.issn.1000-6532.2018.02.001王亞文, 貴永亮, 宋春燕, 等. 高爐渣制備微晶玻璃的研究進展. 礦產綜合利用, 2018(2): 1 doi: 10.3969/j.issn.1000-6532.2018.02.001 [2] He F, Fang Y, Xie J L, et al. Fabrication and characterization of glass-ceramics materials developed from steel slag waste. Mater Des, 2012, 42: 198 doi: 10.1016/j.matdes.2012.05.033 [3] Furlani E, Tonello G, Maschio S. Recycling of steel slag and glass cullet from energy saving lamps by fast firing production of ceramics. Waste Manage, 2010, 30(8-9): 1714 doi: 10.1016/j.wasman.2010.03.030 [4] Zhang Y Z, Li Y, Cang D Q. Present research and tendency of comprehensive utilization of the ferroalloy-slag. Energy Metall Ind, 2013, 32(5): 44 doi: 10.3969/j.issn.1001-1617.2013.05.012張亞洲, 李宇, 蒼大強. 鐵合金渣綜合利用的研究現狀及發展趨勢. 冶金能源, 2013, 32(5): 44 doi: 10.3969/j.issn.1001-1617.2013.05.012 [5] Kong L J, Zhao X L, Liu G L. Briefly discussion on studying properties and comprehensive utilization of ferro-nickel slag. Copper Eng, 2014(4): 42 doi: 10.3969/j.issn.1009-3842.2014.04.014孔令軍, 趙祥麟, 劉廣龍. 紅土鎳礦冶煉鎳鐵廢渣綜合利用研究綜述. 銅業工程, 2014(4): 42 doi: 10.3969/j.issn.1009-3842.2014.04.014 [6] Ma M S, Ni W, Wang Y L. Crystallization kinetics and process of the glass-ceramic produced by nickel slag. J Univ Sci Technol Beijing, 2007, 29(2): 168 doi: 10.3321/j.issn:1001-053X.2007.02.013馬明生, 倪文, 王亞利. 鎳渣制備微晶玻璃的結晶動力學及結晶化過程. 北京科技大學學報, 2007, 29(2): 168 doi: 10.3321/j.issn:1001-053X.2007.02.013 [7] Shu Z, Zhou J, Wang Y X. The preparation of cast stone from thermal phosphorous slag liquid. Acta Petrol Mineral, 2008, 27(2): 152 doi: 10.3969/j.issn.1000-6524.2008.02.007舒杼, 周俊, 王焰新. 利用高溫磷渣液直接制備微晶鑄石的模擬研究. 巖石礦物學雜志, 2008, 27(2): 152 doi: 10.3969/j.issn.1000-6524.2008.02.007 [8] Ma M S. Status of pyrometallurgy process of nickel laterite. China Nonferrous Metall, 2013, 42(5): 57 doi: 10.3969/j.issn.1672-6103.2013.05.014馬明生. 紅土鎳礦火法冶煉工藝現狀. 中國有色冶金, 2013, 42(5): 57 doi: 10.3969/j.issn.1672-6103.2013.05.014 [9] Ma Z C, Liu L Y, Zhao H, et al. Method of Producing Glass-Ceramics with Hot-Melt Slag of Ferronickel: China Patent, CN201310681456.4. 2014-04-02馬忠誠, 劉力勇, 趙海, 等. 用鎳鐵熱熔渣生產微晶玻璃的方法: 中國專利, CN201310681456.4. 2014-04-02 [10] Zhang W J, Li Y, Li H, et al. Research of preparing CMSA glass-ceramics with the nickel iron slag and fly ash. Bull Chin Ceram Soc, 2014, 33(12): 3359 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201412059.htm張文軍, 李宇, 李宏, 等. 利用鎳鐵渣及粉煤灰制備CMSA系微晶玻璃的研究. 硅酸鹽通報, 2014, 33(12): 3359 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201412059.htm [11] Mei S X, Pei K P, He F, et al. Structure and properties of molten blast furnace slag glass-ceramics. J Synth Cryst, 2017, 46(4): 698 doi: 10.3969/j.issn.1000-985X.2017.04.023梅書霞, 裴可鵬, 何峰, 等. 高爐熔渣微晶玻璃的結構與性能研究. 人工晶體學報, 2017, 46(4): 698 doi: 10.3969/j.issn.1000-985X.2017.04.023 [12] Dai W B, Li Y, Cang D Q, et al. Research on a novel modifying furnace for converting hot slag directly into glass-ceramics. J Clean Prod, 2018, 172: 169 doi: 10.1016/j.jclepro.2017.10.039 [13] Zhao L H, Li Y, Zhang L L, et al. Effects of CaO and Fe2O3 on the microstructure and mechanical properties of SiO2-CaO-MgO-Fe2O3 ceramics from steel slag. ISIJ Int, 2017, 57(1): 15 doi: 10.2355/isijinternational.ISIJINT-2016-064 [14] Zhao G Z, Li Y, Dai W B, et al. Preparation and processing parameter research of high basicity steel slag-based glass-ceramics with one-step sintering process. Chin J Eng, 2016, 38(2): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201602008.htm趙貴州, 李宇, 代文彬, 等. 鋼渣基高堿度微晶玻璃的一步法制備及工藝參數研究. 工程科學學報, 2016, 38(2): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201602008.htm [15] Lu X, Li Y, Ma S, et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat. Chin J Eng, 2016, 38(10): 1386 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201610006.htm盧翔, 李宇, 馬帥, 等. 利用顯熱對熔渣進行直接改質的熱平衡分析及試驗驗證. 工程科學學報, 2016, 38(10): 1386 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201610006.htm [16] Rawlings R D, Wu J P, Boccaccini A R. Glass-ceramics: their production from wastes-a review. J Mater Sci, 2006, 41(3): 733. doi: 10.1007/s10853-006-6554-3 [17] Chen K Y, Li Y, Meng L, et al. Preparation of glass-ceramic from titanium-bearing blast furnace slag by "Petrurgic" method//TMS Annual Meeting & Exhibition. Springer, 2018: 415 [18] He F, Zheng M D, Zhang W T. Research on cast stone preparing by Au-Cu tailing. J Wuhan Univ Technol, 2014, 36(1): 44 doi: 10.3963/j.issn.1671-4431.2014.01.008何峰, 鄭敏棟, 張文濤. 金銅尾礦制備微晶鑄石的研究. 武漢理工大學學報, 2014, 36(1): 44 doi: 10.3963/j.issn.1671-4431.2014.01.008 [19] Yang Z Q, Ni W, Gao S J, et al. Production of Microcrystalline Castings from Secondary Slag After Iron Extraction by Reduction of Molten Nickel Slag: China Patent, CN201310267482.2. 2013-10-09楊志強, 倪文, 高術杰, 等. 利用熔態鎳渣還原提鐵后的二次熔渣生產微晶鑄石的方法: 中國專利, CN201310267482.2. 2013-10-09 [20] Ma M S, Ni W, Wang Y L, et al. Crystallization behavior and kinetics of TiO2 and Cr2O3 doped glass ceramics produced from nickel residue. J Chin Ceram Soc, 2009, 37(4): 609 doi: 10.3321/j.issn:0454-5648.2009.04.023馬明生, 倪文, 王亞利, 等. TiO2及Cr2O3對鎳渣微晶玻璃結晶過程影響及結晶動力學. 硅酸鹽學報, 2009, 37(4): 609 doi: 10.3321/j.issn:0454-5648.2009.04.023 [21] German Society of iron and steel engineers. Slag Collection. Beijing: Metallurgical Industry Press, 1989德國鋼鐵工程師協會編. 渣圖集. 北京: 冶金工業出版社, 1989 -