<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

冶金熔渣混合制備微晶玻璃的組成及性能優化

李宇 伊耀東 陳奎元 孟昕陽

李宇, 伊耀東, 陳奎元, 孟昕陽. 冶金熔渣混合制備微晶玻璃的組成及性能優化[J]. 工程科學學報, 2019, 41(10): 1288-1297. doi: 10.13374/j.issn2095-9389.2018.09.19.001
引用本文: 李宇, 伊耀東, 陳奎元, 孟昕陽. 冶金熔渣混合制備微晶玻璃的組成及性能優化[J]. 工程科學學報, 2019, 41(10): 1288-1297. doi: 10.13374/j.issn2095-9389.2018.09.19.001
LI Yu, YI Yao-dong, CHEN Kui-yuan, MENG Xin-yang. Optimization of performance and composition for glass ceramics prepared from mixing molten slags[J]. Chinese Journal of Engineering, 2019, 41(10): 1288-1297. doi: 10.13374/j.issn2095-9389.2018.09.19.001
Citation: LI Yu, YI Yao-dong, CHEN Kui-yuan, MENG Xin-yang. Optimization of performance and composition for glass ceramics prepared from mixing molten slags[J]. Chinese Journal of Engineering, 2019, 41(10): 1288-1297. doi: 10.13374/j.issn2095-9389.2018.09.19.001

冶金熔渣混合制備微晶玻璃的組成及性能優化

doi: 10.13374/j.issn2095-9389.2018.09.19.001
基金項目: 

國家自然科學基金資助項目 51674029

"十三五"國家重點研發計劃資助項目 2016YFB0601304

詳細信息
    通訊作者:

    李宇, E-mail: leeuu00@sina.com

  • 中圖分類號: TF141

Optimization of performance and composition for glass ceramics prepared from mixing molten slags

More Information
  • 摘要: 以電爐鎳鐵渣和普通高爐渣為主要原料,采用Petrurgic一步法制備了微晶玻璃,并結合力學性能測試,對樣品進行了X射線衍射(XRD)、掃描電鏡(SEM)等分析,討論了電爐鎳鐵渣和普通高爐渣配比、Mg2+含量以及晶核劑TiO2對成品微觀結構及性能的影響規律.結果表明:將熔渣冷卻至900℃結晶和650℃退火,能夠制備出性能優良的微晶玻璃.當Mg2+含量增加且析出晶體為單一輝石族礦物時,微晶玻璃具有較高的力學性能.電爐鎳鐵渣或Mg2+含量增加,會導致其輝石族礦物含量增加,當兩種渣混合摻量達到90%(鎳鐵渣質量分數50%,高爐渣質量分數為40%)且外摻2% MgO時,所制備微晶玻璃結構致密,僅含有單一輝石族礦物,包括透輝石、普通輝石和斜頑輝石,從而具有最優的力學性能,其抗折強度達210 MPa,抗壓強度達1162 MPa.電爐鎳鐵渣或者MgO含量進一步增加,會導致鎂橄欖石析出,此時微晶玻璃的力學性能顯著下降.TiO2含量的增加不改變微晶玻璃晶體種類,合適摻入TiO2(本實驗為質量分數2%)能夠增強透輝石含量,提升性能;但過量摻入會抑制晶體生長,導致其性能下降.

     

  • 圖  1  微晶玻璃不同制備工藝比較.(a)成核溫度和析晶溫度區域極少疊加下的溫度與成核/晶體生長速率變化關系; (b)兩步法熱處理制度;(c) 成核溫度和析晶溫度區域大部分疊加的溫度與成核/晶體生長速率變化關系;(d) Petrurgic法熱處理制度

    Figure  1.  Comparison of different heat treatment processes of glass ceramics: (a) temperature dependence of the nucleation and growth rates with negligible overlap; (b) two step method; (c) temperature dependence of the nucleation and growth rates with significant overlap of the secondary nuclei rate and the growth rate curves; (d) Petrurgic method

    圖  2  不同爐渣摻量樣品性能測試. (a)抗折強度;(b)抗壓強度

    Figure  2.  Performance of samples with different slag contents: (a) flexural strength; (b) compressive strength

    圖  3  不同Mg2+含量樣品性能測試.(a)抗折強度;(b)抗壓強度

    Figure  3.  Performance of samples with different Mg2+ contents: (a) flexural strength; (b) compressive strength

    圖  4  不同TiO2含量樣品性能測試. (a)抗折強度;(b)抗壓強度

    Figure  4.  Performance of samples with different TiO2 contents: (a) flexural strength; (b) compressive strength

    圖  5  樣品X射線衍射分析. (a)不同爐渣摻量樣品的X射線衍射比較,其中箭頭表示特征峰的位置;(b)純礦物單晶相X射線衍射峰比較

    Figure  5.  XRD analysis of the samples: (a) comparison among different samples (the arrows indicate the positions of characteristic peaks); (b) XRD comparison among pure minerals

    圖  6  樣品X射線衍射分析. (a)不同Mg2+含量樣品的X射線衍射比較,其中箭頭表示特征峰的位置;(b)純礦物單晶相X射線衍射峰比較

    Figure  6.  XRD analysis of sample: (a) XRD comparison among samples with different Mg2+ contents (the arrows indicate the positions of characteristic peaks); (b) XRD comparison among pure minerals

    圖  7  樣品X射線衍射分析. (a)不同TiO2含量樣品的X射線衍射比較,其中箭頭表示特征峰的變化趨勢;(b)純礦物單晶相峰X射線衍射比較

    Figure  7.  XRD analysis of samples: (a) XRD comparison among samples with different TiO2 contents, the arrows indicate the positions of characteristic peaks; (b) XRD comparison among pure minerals

    圖  8  不同爐渣摻量樣品掃描鏡圖. (a)S1;(b)S2;(c)S3

    Figure  8.  SEM images of the samples with different slag contents: (a)S1;(b)S2;(c)S3

    圖  9  不同Mg2+含量樣品掃描電鏡圖. (a)S2;(b)S4;(c)S5

    Figure  9.  SEM images among samples with different Mg2+ contents: (a)S2;(b)S4;(c)S5

    圖  10  不同TiO2含量樣品掃描電鏡圖. (a)S1;(b)S6;(c)S7

    Figure  10.  SEM images of the samples with different TiO2 contents: (a)S2;(b)S4;(c)S5

    圖  11  CaO-SiO2-MgO相圖(Al2O3質量分數10%)[21]

    Figure  11.  Phase diagram of CaO-SiO2-MgO (Al2O3 content =10%)[21]

    表  1  樣品化學組成(質量分數)

    Table  1.   Chemical composition of samples?%

    樣品 高爐渣 電爐鎳鐵渣 石英砂 MgCO3 TiO2 CaO SiO2 Al2O3 MgO TiO2 Fe2O3 其他
    S1 50 40 10 20.39 45.06 9.98 16.42 0.47 5.48 2.2
    S2 40 50 10 16.71 46.87 8.79 18.23 0.40 6.60 2.4
    S3 30 60 10 13.02 48.68 7.60 20.05 0.33 7.71 2.61
    S4 40 50 10 2 16.38 45.95 8.62 19.84 0.39 6.47 2.35
    S5 40 50 10 4 16.07 45.07 8.45 21.37 0.38 6.35 2.31
    S6 50 40 10 2 19.99 44.18 9.78 16.10 2.42 5.37 2.16
    S7 50 40 10 4 19.61 43.32 9.60 15.79 4.30 5.27 2.11
    注:①和②表示換算后的MgO質量分數.
    下載: 導出CSV

    表  2  樣品與國標要求性能的對比

    Table  2.   Comparison between performance of different samples and requirement of standard

    性能 抗折強度/MPa 抗壓強度/MPa
    本實驗樣品 210 1162
    微晶玻璃行業標準要求(JCT 872—2000) > 30
    其他文獻中制備的微晶玻璃[11, 18-20] 100~120 600~800
    鑄石行業標準要求(JC 514.1—1993) > 63.7 > 588
    下載: 導出CSV

    表  3  熔渣改質顯熱和補熱對比

    Table  3.   Contrast between sensible heat and heat compensation of slag

    樣品 熔渣顯熱,Qs/J 改質劑吸熱,Qen/J
    50%高爐熔渣+40%鎳鐵電爐熔渣+10%冷態石英砂 26928 10320
    40%高爐熔渣+50%鎳鐵電爐熔渣+10%冷態石英砂 24480 10568
    30%高爐熔渣+60%鎳鐵電爐熔渣+10%冷態石英砂 18360 11193
    40%高爐熔渣+50%鎳鐵電爐熔渣+10%冷態石英砂+外加2%MgO 18348 14479
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang Y W, Gui Y L, Song C Y, et al. Research progress in glass ceramics with the blast furnace slag. Mult Util Min Res, 2018(2): 1 doi: 10.3969/j.issn.1000-6532.2018.02.001

    王亞文, 貴永亮, 宋春燕, 等. 高爐渣制備微晶玻璃的研究進展. 礦產綜合利用, 2018(2): 1 doi: 10.3969/j.issn.1000-6532.2018.02.001
    [2] He F, Fang Y, Xie J L, et al. Fabrication and characterization of glass-ceramics materials developed from steel slag waste. Mater Des, 2012, 42: 198 doi: 10.1016/j.matdes.2012.05.033
    [3] Furlani E, Tonello G, Maschio S. Recycling of steel slag and glass cullet from energy saving lamps by fast firing production of ceramics. Waste Manage, 2010, 30(8-9): 1714 doi: 10.1016/j.wasman.2010.03.030
    [4] Zhang Y Z, Li Y, Cang D Q. Present research and tendency of comprehensive utilization of the ferroalloy-slag. Energy Metall Ind, 2013, 32(5): 44 doi: 10.3969/j.issn.1001-1617.2013.05.012

    張亞洲, 李宇, 蒼大強. 鐵合金渣綜合利用的研究現狀及發展趨勢. 冶金能源, 2013, 32(5): 44 doi: 10.3969/j.issn.1001-1617.2013.05.012
    [5] Kong L J, Zhao X L, Liu G L. Briefly discussion on studying properties and comprehensive utilization of ferro-nickel slag. Copper Eng, 2014(4): 42 doi: 10.3969/j.issn.1009-3842.2014.04.014

    孔令軍, 趙祥麟, 劉廣龍. 紅土鎳礦冶煉鎳鐵廢渣綜合利用研究綜述. 銅業工程, 2014(4): 42 doi: 10.3969/j.issn.1009-3842.2014.04.014
    [6] Ma M S, Ni W, Wang Y L. Crystallization kinetics and process of the glass-ceramic produced by nickel slag. J Univ Sci Technol Beijing, 2007, 29(2): 168 doi: 10.3321/j.issn:1001-053X.2007.02.013

    馬明生, 倪文, 王亞利. 鎳渣制備微晶玻璃的結晶動力學及結晶化過程. 北京科技大學學報, 2007, 29(2): 168 doi: 10.3321/j.issn:1001-053X.2007.02.013
    [7] Shu Z, Zhou J, Wang Y X. The preparation of cast stone from thermal phosphorous slag liquid. Acta Petrol Mineral, 2008, 27(2): 152 doi: 10.3969/j.issn.1000-6524.2008.02.007

    舒杼, 周俊, 王焰新. 利用高溫磷渣液直接制備微晶鑄石的模擬研究. 巖石礦物學雜志, 2008, 27(2): 152 doi: 10.3969/j.issn.1000-6524.2008.02.007
    [8] Ma M S. Status of pyrometallurgy process of nickel laterite. China Nonferrous Metall, 2013, 42(5): 57 doi: 10.3969/j.issn.1672-6103.2013.05.014

    馬明生. 紅土鎳礦火法冶煉工藝現狀. 中國有色冶金, 2013, 42(5): 57 doi: 10.3969/j.issn.1672-6103.2013.05.014
    [9] Ma Z C, Liu L Y, Zhao H, et al. Method of Producing Glass-Ceramics with Hot-Melt Slag of Ferronickel: China Patent, CN201310681456.4. 2014-04-02

    馬忠誠, 劉力勇, 趙海, 等. 用鎳鐵熱熔渣生產微晶玻璃的方法: 中國專利, CN201310681456.4. 2014-04-02
    [10] Zhang W J, Li Y, Li H, et al. Research of preparing CMSA glass-ceramics with the nickel iron slag and fly ash. Bull Chin Ceram Soc, 2014, 33(12): 3359 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201412059.htm

    張文軍, 李宇, 李宏, 等. 利用鎳鐵渣及粉煤灰制備CMSA系微晶玻璃的研究. 硅酸鹽通報, 2014, 33(12): 3359 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201412059.htm
    [11] Mei S X, Pei K P, He F, et al. Structure and properties of molten blast furnace slag glass-ceramics. J Synth Cryst, 2017, 46(4): 698 doi: 10.3969/j.issn.1000-985X.2017.04.023

    梅書霞, 裴可鵬, 何峰, 等. 高爐熔渣微晶玻璃的結構與性能研究. 人工晶體學報, 2017, 46(4): 698 doi: 10.3969/j.issn.1000-985X.2017.04.023
    [12] Dai W B, Li Y, Cang D Q, et al. Research on a novel modifying furnace for converting hot slag directly into glass-ceramics. J Clean Prod, 2018, 172: 169 doi: 10.1016/j.jclepro.2017.10.039
    [13] Zhao L H, Li Y, Zhang L L, et al. Effects of CaO and Fe2O3 on the microstructure and mechanical properties of SiO2-CaO-MgO-Fe2O3 ceramics from steel slag. ISIJ Int, 2017, 57(1): 15 doi: 10.2355/isijinternational.ISIJINT-2016-064
    [14] Zhao G Z, Li Y, Dai W B, et al. Preparation and processing parameter research of high basicity steel slag-based glass-ceramics with one-step sintering process. Chin J Eng, 2016, 38(2): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201602008.htm

    趙貴州, 李宇, 代文彬, 等. 鋼渣基高堿度微晶玻璃的一步法制備及工藝參數研究. 工程科學學報, 2016, 38(2): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201602008.htm
    [15] Lu X, Li Y, Ma S, et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat. Chin J Eng, 2016, 38(10): 1386 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201610006.htm

    盧翔, 李宇, 馬帥, 等. 利用顯熱對熔渣進行直接改質的熱平衡分析及試驗驗證. 工程科學學報, 2016, 38(10): 1386 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201610006.htm
    [16] Rawlings R D, Wu J P, Boccaccini A R. Glass-ceramics: their production from wastes-a review. J Mater Sci, 2006, 41(3): 733. doi: 10.1007/s10853-006-6554-3
    [17] Chen K Y, Li Y, Meng L, et al. Preparation of glass-ceramic from titanium-bearing blast furnace slag by "Petrurgic" method//TMS Annual Meeting & Exhibition. Springer, 2018: 415
    [18] He F, Zheng M D, Zhang W T. Research on cast stone preparing by Au-Cu tailing. J Wuhan Univ Technol, 2014, 36(1): 44 doi: 10.3963/j.issn.1671-4431.2014.01.008

    何峰, 鄭敏棟, 張文濤. 金銅尾礦制備微晶鑄石的研究. 武漢理工大學學報, 2014, 36(1): 44 doi: 10.3963/j.issn.1671-4431.2014.01.008
    [19] Yang Z Q, Ni W, Gao S J, et al. Production of Microcrystalline Castings from Secondary Slag After Iron Extraction by Reduction of Molten Nickel Slag: China Patent, CN201310267482.2. 2013-10-09

    楊志強, 倪文, 高術杰, 等. 利用熔態鎳渣還原提鐵后的二次熔渣生產微晶鑄石的方法: 中國專利, CN201310267482.2. 2013-10-09
    [20] Ma M S, Ni W, Wang Y L, et al. Crystallization behavior and kinetics of TiO2 and Cr2O3 doped glass ceramics produced from nickel residue. J Chin Ceram Soc, 2009, 37(4): 609 doi: 10.3321/j.issn:0454-5648.2009.04.023

    馬明生, 倪文, 王亞利, 等. TiO2及Cr2O3對鎳渣微晶玻璃結晶過程影響及結晶動力學. 硅酸鹽學報, 2009, 37(4): 609 doi: 10.3321/j.issn:0454-5648.2009.04.023
    [21] German Society of iron and steel engineers. Slag Collection. Beijing: Metallurgical Industry Press, 1989

    德國鋼鐵工程師協會編. 渣圖集. 北京: 冶金工業出版社, 1989
  • 加載中
圖(11) / 表(3)
計量
  • 文章訪問數:  1004
  • HTML全文瀏覽量:  277
  • PDF下載量:  162
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-10-22
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回