<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

超高強熱成形鋼的應變速率敏感性

梁江濤 趙征志 尹鴻祥 路洪洲 陳偉健 唐荻

梁江濤, 趙征志, 尹鴻祥, 路洪洲, 陳偉健, 唐荻. 超高強熱成形鋼的應變速率敏感性[J]. 工程科學學報, 2018, 40(9): 1083-1090. doi: 10.13374/j.issn2095-9389.2018.09.009
引用本文: 梁江濤, 趙征志, 尹鴻祥, 路洪洲, 陳偉健, 唐荻. 超高強熱成形鋼的應變速率敏感性[J]. 工程科學學報, 2018, 40(9): 1083-1090. doi: 10.13374/j.issn2095-9389.2018.09.009
LIANG Jiang-tao, ZHAO Zheng-zhi, YIN Hong-xiang, LU Hong-zhou, CHEN Wei-jian, TANG Di. Strain rate sensitivity of ultra-high strength hot stamping steel[J]. Chinese Journal of Engineering, 2018, 40(9): 1083-1090. doi: 10.13374/j.issn2095-9389.2018.09.009
Citation: LIANG Jiang-tao, ZHAO Zheng-zhi, YIN Hong-xiang, LU Hong-zhou, CHEN Wei-jian, TANG Di. Strain rate sensitivity of ultra-high strength hot stamping steel[J]. Chinese Journal of Engineering, 2018, 40(9): 1083-1090. doi: 10.13374/j.issn2095-9389.2018.09.009

超高強熱成形鋼的應變速率敏感性

doi: 10.13374/j.issn2095-9389.2018.09.009
基金項目: 

國家自然科學基金資助項目(51574028)

北京市科技計劃課題資助項目(D151100003515002)

詳細信息
  • 中圖分類號: TG111.91;TG142.1

Strain rate sensitivity of ultra-high strength hot stamping steel

  • 摘要: 利用CMT5105電子萬能試驗機和HTM 16020電液伺服高速試驗機對超高強熱成形鋼進行拉伸試驗,應變速率范圍為10-3~103 s-1,模擬熱成形零件在不同應變速率下的碰撞情況.結果表明:在低應變速率階段(10-3~10-1 s-1)實驗鋼的應變速率敏感性不高,隨應變速率的升高,實驗鋼的強度和延伸率變化不大;在高應變速率階段(100~103 s-1)實驗鋼具有高的應變速率敏感性,隨應變速率的升高,實驗鋼的強度和延伸率都呈增大的趨勢,并且抗拉強度的應變速率敏感性要大于屈服強度.這主要是由于在高應變速率階段拉伸時產生的絕熱溫升現象和應變硬化現象共同作用造成的.實驗鋼頸縮后的延伸率隨應變速率的增大而減小,主要是由于高應變速率下馬氏體局部變形不均勻造成的.實驗鋼吸收沖擊功的能力隨應變速率的升高而增大,實驗鋼達到均勻延伸率時吸收沖擊功的大小對應變速率更敏感.與低應變速率階段相比,實驗鋼在高應變速率階段的斷口韌窩的平均直徑更小,韌窩的深度更深,這與高應變速率階段部分馬氏體晶粒的碎化有關.通過掃描電鏡和透射電鏡觀察發現,在高應變速率拉伸時晶粒有明顯的拉長趨勢,并且在應力集中的地方有一些微空洞的存在,應變速率為103 s-1時部分區域有碎化的現象.

     

  • [4] Ramezani M, Ripin Z M. Combined experimental and numerical analysis of bulge test at high strain rates using split Hopkinson pressure bar apparatus. J Mater Process Technol, 2010, 210(8):1061
    [5] Singh N K, Cadoni E, Singha M K, et al. Dynamic tensile behavior of multi phase high yield strength steel. Mater Des, 2011, 32(10):5091
    [6] Kim J H, Kim D, Han H N, et al. Strain rate dependent tensile behavior of advanced high strength steels:experiment and constitutive modeling. Mater Sci Eng A, 2013, 559:222
    [7] Ulacia I, Salisbury C P, Hurtado I, et al. Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures. J Mater Process Technol, 2011, 211(5):830
    [8] Wang W R, Li M, He C W, et al. Experimental study on high strain rate behavior of high strength 600-1000 MPa dual phase steels and 1200 MPa fully martensitic steels. Mater Des, 2013, 47:510
    [9] Yu H D, Guo Y J, Lai X M. Rate-dependent behavior and constitutive model of DP600 steel at strain rate from 10-4 to 103 s-1. Mater Des, 2009, 30(7):2501
    [10] Wei X C, Fu R Y, Li L. Tensile deformation behavior of coldrolled TRIP-aided steels over large range of strain rates. Mater Sci Eng A, 2007, 465(1-2):260
    [12] Feng F, Huang S Y, Meng Z H, et al. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures. Mater Des, 2014, 57:10
    [13] Qin J G, Chen R, Wen X J, et al. Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading. Mater Sci Eng A, 2013, 586:62
    [14] Liu Y, Dong D Y, Wang L, et al. Strain rate dependent deformation and failure behavior of laser weld DP780 steel joint under dynamic tensile loading. Mater Sci Eng A, 2015, 627:296
    [15] Dong D Y, Liu Y, Yang Y L, et al. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding. Mater Sci Eng A, 2014, 594:17
    [16] Kim S B, Huh H, Bok H H, et al. Forming limit diagram of auto-body steel sheets for high-speed sheet metal forming. J Mater Process Technol, 2011, 211(5):851
    [17] Wang M Q, Akiyama E, Tsuzaki K. Crosshead speed dependence of the notch tensile strength of a high strength steel in the presence of hydrogen. Scripta Mater, 2005, 53(6):713
  • 加載中
計量
  • 文章訪問數:  834
  • HTML全文瀏覽量:  414
  • PDF下載量:  22
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-10-09

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com