<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

粉末冶金鋁合金燒結致密化過程

邱婷婷 吳茂 杜智淵 曲選輝

邱婷婷, 吳茂, 杜智淵, 曲選輝. 粉末冶金鋁合金燒結致密化過程[J]. 工程科學學報, 2018, 40(9): 1075-1082. doi: 10.13374/j.issn2095-9389.2018.09.008
引用本文: 邱婷婷, 吳茂, 杜智淵, 曲選輝. 粉末冶金鋁合金燒結致密化過程[J]. 工程科學學報, 2018, 40(9): 1075-1082. doi: 10.13374/j.issn2095-9389.2018.09.008
QIU Ting-ting, WU Mao, DU Zhi-yuan, QU Xuan-hui. Sintering densification process of powder metallurgy aluminum alloy[J]. Chinese Journal of Engineering, 2018, 40(9): 1075-1082. doi: 10.13374/j.issn2095-9389.2018.09.008
Citation: QIU Ting-ting, WU Mao, DU Zhi-yuan, QU Xuan-hui. Sintering densification process of powder metallurgy aluminum alloy[J]. Chinese Journal of Engineering, 2018, 40(9): 1075-1082. doi: 10.13374/j.issn2095-9389.2018.09.008

粉末冶金鋁合金燒結致密化過程

doi: 10.13374/j.issn2095-9389.2018.09.008
基金項目: 

新金屬材料國家重點實驗室自主課題資助項目(2016Z-24)

國家自然科學基金資助項目(51774036)

詳細信息
  • 中圖分類號: TF124

Sintering densification process of powder metallurgy aluminum alloy

  • 摘要: 以純Al粉為主要原料,添加Cu單質粉末以及Al-Mg、Al-Si中間合金粉,利用粉末冶金壓制燒結方法制備出相對密度98%以上的Al-Mg-Si-Cu系鋁合金.研究表明,燒結致密化過程主要分為3個階段:初始階段(室溫~460℃),坯體內首先形成Al-Mg合金液相,液相中的Mg原子分別擴散至Al或Al-Si粉末中,與Al2O3反應并破除氧化膜,形成Al-Mg-O等化合物;同時,Al-Cu發生互擴散,形成Al2Cu等金屬間化合物.第二階段(460~560℃),Al-Cu、Al-Si液相快速填充顆粒縫隙或孔洞,坯體相對密度顯著提高;此階段的致密化機制主要是毛細管力引起的顆粒重排,以及溶解析出導致的晶界平直化.第三階段(560~600℃),隨溫度的升高,液相潤濕性提高,晶粒快速長大,使得大尺寸孔洞填充,燒結體基本實現全致密,此階段的致密化主要由填隙機制控制.在鋁合金晶界處發現了MgAl2O4和MgAlCuO氧化物的存在,推測Al粉表面氧化膜的破除機制與合金成分有關.由于Al-Cu液相在Al表面的潤濕速率遠高于AlN的生長速率,因為在本體系中未發現AlN的存在.

     

  • [1] Qian M, Schaffer G B. Sintering of aluminium and its alloys. Sinter Adv Mater, 2010, 60(3547):291
    [2] Daver E M, Trombino C J. State of the North American PM industry-2006. Int J Powder Metall, 2006, 42(4):35
    [3] Boland C D, Hexemer R L. Industrial processing of a novel Al-Cu-Mg powder metallurgy alloy. Mater Sci Eng A, 2013, 559(1):902
    [4] Lall C, Heath W. P/M aluminum structural parts-Manufacturing and metallurgical fundamentals. Int J Powder Metall, 2000, 36(6):45
    [5] Gutin S S, Panov A A, Khlopin M I. Effect of oxide films in the sintering of aluminum powders. Sov Powder Metall Met Ceram, 1972, 11(4):280
    [6] Chiavazza V, Pijolat M, Lalauze R. Evolution of alloying elements during outgassing in an aluminium zinc magnesium alloy made by powder metallurgy. J Mater Sci, 1988, 23(8):2960
    [7] Lumley R N, Sercombe T B, Schaffer G M. Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans A, 1999, 30(2):457
    [8] Kondoh K, Kimura A, Watanabe R. Effect of Mg on sintering phenomenon of aluminium alloy powder particle. Powder Metall, 2001, 44(2):161
    [9] MacAskill I A, Hexemer Jr R L, Donaldson I W, et al. Effects of magnesium, tin and nitrogen on the sintering response of aluminum powder. J Mater Process Technol, 2010, 210(15):2252
    [10] Schaffer G B, Sercombe T B, Lumley R N. Liquid phase sintering of aluminium alloys. Mater Chem Phys, 2001, 67(1-3):85
    [11] Yan M, Yu P, Schaffer G B, et al. Secondary phases and interfaces in a nitrogen-atmosphere sintered Al alloy:transmission electron microscopy evidence for the formation of AlN during liquid phase sintering. Acta Mater, 2010, 58(17):5667
    [12] Sercombe T B, Schaffer G B. On the role of magnesium and nitrogen in the infiltration of aluminium by aluminium for rapid prototyping applications. Acta Mater, 2004, 52(10):3019
    [13] Dunnett K S, Mueller R M, Bishop D P. Development of Al-Ni-Mg-(Cu) aluminum P/M alloys. J Mater Process Technol, 2008, 198(1-3):31
    [14] Schaffer G B, Huo S H, Drennan J, et al. The effect of trace elements on the sintering of an Al-Zn-Mg-Cu alloy. Acta Mater, 2001, 49(14):2671
    [15] Schaffer G B, Yao J Y, Bonner S J, et al. The effect of tin and nitrogen on liquid phase sintering of Al-Cu-Mg-Si alloys. Acta Mater, 2008, 56(11):2615
    [16] Schaffer G B, Hall B J. The influence of the atmosphere on the sintering of aluminum. Metall Mater Trans A, 2002, 33(10):3279
    [17] Schaffer G B, Hall J B, Bonner S J, et al. The effect of the atmosphere and the role of pore filling on the sintering of aluminium. Acta Mater, 2006, 54(1):131
    [18] Yurchenko A G, Shcherban N I, Pugina L I. Elastic aftereffect of iron-graphite compacts in cold pressing. Sov Powder Metall Met Ceram, 1970, 9(5):367
    [19] Crossin E, Yao J Y, Schaffer G B. Swelling during liquid phase sintering of Al-Mg-Si-Cu alloys. Powder Metall, 2007, 50(4):354
    [20] Scholz H, Greil P. Nitridation reactions of molten Al-(Mg, Si) alloys. J Mater Sci, 1991, 26(3):669
    [21] Hall B J, Schaffer G B, Ning Z, et al. Al/AlN layered compos-ites by direct nitridation of aluminum. J Mater Sci Lett, 2003, 22:1627
    [22] Kehl W, Fischmeister H F. Liquid phase sintering of Al-Cu compacts. Powder Metall, 1980, 23(3):113
    [23] Lee S M, Kang S J L. Theoretical analysis of liquid-phase sintering:Pore filling theory. Acta Mater, 1998, 46(9):3191
    [24] Kang S J L, Kim K H, Yoon D N. Densification and shrinkage during liquid-phase sintering. J Am Ceram Soc, 1991, 74(2):425
    [25] Yang D Y, Yoon D Y, Kang S J L. Abnormal grain growth enhanced densification of liquid phase-sintered WC-Co in support of the pore filling theory. J Mater Sci, 2012, 47(20):7056
    [26] Zhang F, Levine L E, Allen A J, et al. In situ structural characterization of ageing kineticsin aluminum alloy 2024 across angstrom-to-micrometer length scales. Acta Mater, 2016, 111:385
    [27] Wu M, Chang L L, Zhang L, et al. Effects of roughness on the wettability of high temperature wetting system. Surf Coat Technol, 2016, 287:145
    [28] Naidich J V. The wettability of solids by liquid metals. Prog Surf Membr Sci, 1981, 14:353
    [29] Voitovich R, Mortensen A, Eustathopoulos N. Spreading kinetics of Cu-Cr alloys on carbon substrates//HTC97 Second International Conference on High Temperature Capillarity. 1997:249
    [30] Yang D, Krasowska M, Priest C, et al. Dynamics of capillarydriven flow in open microchannels. J Phys Chem C, 2011, 115(38):18761
    [31] Sercombe T B, Schaffer G B. On the role of tin in the nitridation of aluminium powder. Scripta Mater, 2006, 55(4):323
  • 加載中
計量
  • 文章訪問數:  1343
  • HTML全文瀏覽量:  570
  • PDF下載量:  64
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-11

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com