<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

考慮空間位形力作用的微米軟顆粒溶液微圓管流動規律

朱維耀 王亞震 岳明 鄧慶軍

朱維耀, 王亞震, 岳明, 鄧慶軍. 考慮空間位形力作用的微米軟顆粒溶液微圓管流動規律[J]. 工程科學學報, 2019, 41(10): 1266-1273. doi: 10.13374/j.issn2095-9389.2018.08.31.002
引用本文: 朱維耀, 王亞震, 岳明, 鄧慶軍. 考慮空間位形力作用的微米軟顆粒溶液微圓管流動規律[J]. 工程科學學報, 2019, 41(10): 1266-1273. doi: 10.13374/j.issn2095-9389.2018.08.31.002
ZHU Wei-yao, WANG Ya-zhen, YUE Ming, DENG Qing-jun. Micro circular pipe flow in micron-sized soft particle solution considering the effect of spatial configuration force[J]. Chinese Journal of Engineering, 2019, 41(10): 1266-1273. doi: 10.13374/j.issn2095-9389.2018.08.31.002
Citation: ZHU Wei-yao, WANG Ya-zhen, YUE Ming, DENG Qing-jun. Micro circular pipe flow in micron-sized soft particle solution considering the effect of spatial configuration force[J]. Chinese Journal of Engineering, 2019, 41(10): 1266-1273. doi: 10.13374/j.issn2095-9389.2018.08.31.002

考慮空間位形力作用的微米軟顆粒溶液微圓管流動規律

doi: 10.13374/j.issn2095-9389.2018.08.31.002
基金項目: 

國家重大基金資助項目 11372033

國家重大基金資助項目 2016ZX05010-003

教育部專項資金資助項目 FRF-TP-17-027A2

詳細信息
    通訊作者:

    朱維耀, E-mail: weiyaook@sina.com

  • 中圖分類號: O357.3

Micro circular pipe flow in micron-sized soft particle solution considering the effect of spatial configuration force

More Information
  • 摘要: 針對微米級軟顆粒溶液在微小孔道流動不符合泊肅葉流動規律問題,考慮受固體管壁影響軟顆粒形變產生的空間位形力作用,基于Navier-Stokes理論,推導軟顆粒溶液在圓管中的流速分布及流量表達式,引入顆粒形變因子以表征空間位形力作用的影響;建立考慮空間位形力作用的圓管流動數學模型.由微尺度流動特征實驗,得到軟顆粒溶液微圓管流動規律,與泊肅葉流動對比,結果顯示當管徑小于顆粒直徑時,相同壓力梯度下考慮空間位形力作用的流速比泊肅葉流動擬合結果更接近于實驗數據.通過數值計算分析發現,與泊肅葉流動下的速度分布和平均流量相比,當微圓管尺寸減小時,空間位形力作用隨之增大,其更大程度上影響流體在微圓管內的流動規律;當顆粒呈非球形且最小投影面積相同時,偏離球形顆粒程度越大,空間位形力作用越大,因此空間位形力作用在微小孔道流動中不可忽略.

     

  • 圖  1  球形顆粒通過圓柱形孔道示意圖.(a)顆粒未進入孔道;(b)顆粒完全進入孔道

    Figure  1.  Schematic diagram of spherical particles passing through a cylindrical tunnel: (a) outside the tunnel; (b) in the tunnel

    圖  2  圓柱形顆粒通過圓柱形孔道示意圖.(a)顆粒未進入孔道;(b)顆粒完全進入孔道

    Figure  2.  Schematic diagram of cylindrical particles passing through a cylindrical bore: (a) outside the tunnel; (b) in the tunnel

    圖  3  不同形狀顆粒和不同管徑比的形變因子分布

    Figure  3.  Distribution of deformation factors of particles with different shape particles and tube diameter ratios

    圖  4  水平放置的微圓管流體流動示意圖

    Figure  4.  Scheme of fluid in the horizontal placement of microtube

    圖  5  顆粒掃描電鏡圖

    Figure  5.  Scanning electron micrograph of particles

    圖  6  泊肅葉流動、考慮空間位形力流動和實驗流速與壓力梯度的關系.(a)15 μm;(b)10 μm

    Figure  6.  Relationship between Poiseuille flow, considering spatial configuration force flow, experimental flow velocity and pressure gradient: (a)15 μm; (b)10 μm

    圖  7  空間位形力作用下不同圓管半徑的速度分布.(a)5 μm;(b)10 μm;(c)15 μm;(d)20 μm

    Figure  7.  Velocity distribution under different diameters considering spatial configuration force: (a)5 μm; (b)10 μm; (c)15 μm; (d)20 μm

    圖  8  空間位形力作用下不同圓管半徑的平均流量變化曲線.(a)1~5 μm;(b)5~10 μm;(c)10~15 μm;(d)15~20 μm

    Figure  8.  Average flow curve under different diameters considering spatial configuration force: (a)1~5 μm; (b)5~10 μm; (c)10~15 μm; (d)15~20 μm

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang D L, Xiao J H. Application of deep-profile control and displacement technology of crosslinked polymer micro-ball system. Petrol Geol Recovery Effic, 2008, 15(2): 86 doi: 10.3969/j.issn.1009-9603.2008.02.026

    王代流, 肖建洪. 交聯聚合物微球深部調驅技術及其應用. 油氣地質與采收率, 2008, 15(2): 86 doi: 10.3969/j.issn.1009-9603.2008.02.026
    [2] Wu W X, Song X, Fu Y, et al. Priority selection of weak gel flooding formula on heterogeneous reservoir. Adv Mater Res, 2014, 1073-1076: 2248 doi: 10.4028/www.scientific.net/AMR.1073-1076.2248
    [3] Zhao G, Dai C L, You Q. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system. Petrol Explor Dev, 2018, 45(3): 481 doi: 10.1016/S1876-3804(18)30053-3
    [4] Zhang L, Zhang G C, Ge J J, et al. pH-sensitive polymer in-depth profile control in mid-low permeability reservoirs. Spec Oil Gas Reservoirs, 2016, 23(1): 135 doi: 10.3969/j.issn.1006-6535.2016.01.031

    張磊, 張貴才, 葛際江, 等. 中低滲油藏pH敏感聚合物深部調驅技術. 特種油氣藏, 2016, 23(1): 135 doi: 10.3969/j.issn.1006-6535.2016.01.031
    [5] Liu Z M, Pang Y. Effect of the size and pressure on the modified viscosity of water in microchannels. Acta Mech Sin, 2015, 31(1): 45 doi: 10.1007/s10409-015-0015-7
    [6] Dai B M, Li M X, Ma Y T. Effect of surface roughness on liquid friction and transition characteristics in micro- and mini-channels. Appl Therm Eng, 2014, 67(1-2): 283 doi: 10.1016/j.applthermaleng.2014.03.028
    [7] Li Q, Angeli P. Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels. Chem Eng J, 2017, 328: 717 doi: 10.1016/j.cej.2017.07.037
    [8] Nissan A, Wang Q L, Wallach R. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section. Water Resour Res, 2016, 52(11): 8472 doi: 10.1002/2016WR018849
    [9] Wang Y Y, Xu J B, Yang C. Fluid inhomogeneity within nanoslits and deviation from Hagen-Poiseuille flow. AIChE J, 2017, 63(2): 834 doi: 10.1002/aic.15409
    [10] Chefranov S G, Chefranov A G. Solution to the paradox of the linear stability of the Hagen-Poiseuille flow and the viscous dissipative mechanism of the emergence of turbulence in a boundary layer. J Exp Theor Phys, 2014, 119(2): 331 doi: 10.1134/S1063776114070127
    [11] Metzger B, Rahli O, Yin X L. Heat transfer across sheared suspensions: role of the shear-induced diffusion. J Fluid Mech, 2013, 724: 527 doi: 10.1017/jfm.2013.173
    [12] Chen X D, Xue C D, Zhang L, et al. Inertial migration of deformable droplets in a microchannel. Phys Fluids, 2014, 26(11): 112003 doi: 10.1063/1.4901884
    [13] Lecampion B, Garagash D I. Confined flow of suspensions modelled by a frictional rheology. J Fluid Mech, 2014, 759: 197 doi: 10.1017/jfm.2014.557
    [14] Xiao Q H. The Reservoir Evaluation and Porous Flow Mechanism for Typical Tight Oilfields [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2015

    肖前華. 典型致密油區儲層評價及滲流機理研究[學位論文]. 北京: 中國科學院大學, 2015
    [15] Sun Y H, Long Y Q, Song F Q, et al. Evaluation on plugging performance of aqueous dispersion system of nano/micron-sized polymer particles in low permeability reservoir. Petrol Geol Recovery Effic, 2016, 23(4): 88 doi: 10.3969/j.issn.1009-9603.2016.04.014

    孫業恒, 龍運前, 宋付權, 等. 低滲透油藏納微米聚合物顆粒分散體系封堵性能評價. 油氣地質與采收率, 2016, 23(4): 88 doi: 10.3969/j.issn.1009-9603.2016.04.014
    [16] Ge Y F, Zhang Q, Liu Z T. Synthesis and aggregation behavior of gemini surfactants with piperidinium structure. J Wuhan Inst Technol, 2017, 39(3): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201703005.htm

    葛一凡, 張旗, 劉治田. 哌啶季銨鹽雙子表面活性劑的合成及聚集行為. 武漢工程大學學報, 2017, 39(3): 231 https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201703005.htm
    [17] Chen Q L. Investigations on Liquid Flow, Heat Transfer Characteristics in Microscale and Its Applications [Dissertation]. Hangzhou: Zhejiang University, 2016

    陳巧麗. 微尺度下液體流動、傳熱特性及其應用研究[學位論文]. 杭州: 浙江大學, 2016
    [18] Wang F J. The Study on Micro-scale Percolation Mechanism in Tight Gas Reservoir [Dissertation]. Daqing: Northeast Petroleum University, 2017

    王鳳嬌. 致密氣藏微尺度滲流機理研究[學位論文]. 大慶: 東北石油大學, 2017
    [19] Gaveau A, Coetsier C, Roques C, et al. Bacteria transfer by deformation through microfiltration membrane. J Membr Sci, 2017, 523: 446 doi: 10.1016/j.memsci.2016.10.023
    [20] Liang D. Synthesis, Characterization and Application of Spherical Heteroatomic Mesoporous Materials [Dissertation]. Taiyuan: Taiyuan University of Technology, 2010

    梁棟. 球形雜原子介孔分子篩的制備、表征及應用[學位論文]. 太原: 太原理工大學, 2010
    [21] Suchecka T, Pi?tkiewicz W, Sosnowski T R. Is the cell retention by MF membrane absolutely safe-a hypothetical model for cell deformation in a membrane pore. J Membr Sci, 2005, 250(1-2): 135 doi: 10.1016/j.memsci.2004.08.035
    [22] Wang X F, Zhu W Y, Deng Q J, et al. Micro circular pipe flow mathematical model considering the effect of Van der Walls force. J Northeast Petrol Univ, 2013, 37(5): 85 doi: 10.3969/j.issn.2095-4107.2013.05.012

    王小鋒, 朱維耀, 鄧慶軍, 等. 考慮固液范德華力作用的微圓管流動數學模型. 東北石油大學學報, 2013, 37(5): 85 doi: 10.3969/j.issn.2095-4107.2013.05.012
    [23] Zhu W Y, Zhu X Y, Cao M J, et al. Flow mechanism of nano-micron polymer in microtubes. Sci Technol Rev, 2016, 34(24): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201624022.htm

    朱維耀, 朱曉陽, 曹孟菁, 等. 微圓管中納微米聚合物流動規律. 科技導報, 2016, 34(24): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201624022.htm
  • 加載中
圖(8)
計量
  • 文章訪問數:  1031
  • HTML全文瀏覽量:  519
  • PDF下載量:  15
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-08-31
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回