<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

工業純鈦TA2熱變形過程的流變行為本構方程

柴希陽 高志玉 潘濤 柴鋒 楊志剛 楊才福

柴希陽, 高志玉, 潘濤, 柴鋒, 楊志剛, 楊才福. 工業純鈦TA2熱變形過程的流變行為本構方程[J]. 工程科學學報, 2018, 40(2): 226-232. doi: 10.13374/j.issn2095-9389.2018.02.013
引用本文: 柴希陽, 高志玉, 潘濤, 柴鋒, 楊志剛, 楊才福. 工業純鈦TA2熱變形過程的流變行為本構方程[J]. 工程科學學報, 2018, 40(2): 226-232. doi: 10.13374/j.issn2095-9389.2018.02.013
CHAI Xi-yang, GAO Zhi-yu, PAN Tao, CHAI Feng, YANG Zhi-gang, YANG Cai-fu. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation[J]. Chinese Journal of Engineering, 2018, 40(2): 226-232. doi: 10.13374/j.issn2095-9389.2018.02.013
Citation: CHAI Xi-yang, GAO Zhi-yu, PAN Tao, CHAI Feng, YANG Zhi-gang, YANG Cai-fu. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation[J]. Chinese Journal of Engineering, 2018, 40(2): 226-232. doi: 10.13374/j.issn2095-9389.2018.02.013

工業純鈦TA2熱變形過程的流變行為本構方程

doi: 10.13374/j.issn2095-9389.2018.02.013
基金項目: 

國家國際科技合作專項資助項目(2015DFR50320);國家高技術研究發展計劃資助項目(2015AA03A501)

詳細信息
  • 中圖分類號: TG142.71

Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation

  • 摘要: 利用Gleeble-3800熱模擬實驗機研究了工業純鈦TA2的熱變形行為.變形溫度為750~1000℃,步長50℃,應變速率分別為0.01、0.1、1和10 s-1.實驗結果表明,TA2在熱壓縮變形過程中發生了加工硬化以及動態回復、動態再結晶.隨著變形溫度的降低和應變速率的增加,流變應力逐漸增加.為了準確預測TA2的高溫流變行為,基于實驗數據和雙曲正弦Arrhenius模型構建了考慮應變影響的本構方程,本構方程中材料常數α、n、Q、lnA與應變之間存在6階多項式關系.本文所提出考慮應變影響的本構方程可以用于研究工業純鈦TA2的高溫流變行為.

     

  • [2] Wei H L, Liu G Q, Zhang M H. Physically based constitutive analysis to predict flow stress of medium carbon and vanadium microalloyed steels. Mater Sci Eng A, 2014, 602: 127
    [3] Wei H L, Liu G Q, Xiao X, et al. Characterization of hot deformation behavior of a new microalloyed C-Mn-Al high-strength steel. Mater Sci Eng A, 2013, 564: 140
    [4] Xiao X, Liu G Q, Hu B F, et al. A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel. Comput Mater Sci, 2012, 62: 227
    [5] Ferdowsi M R G, Nakhaie D, Benhangi P H, et al. Modeling the high temperature flow behavior and dynamic recrystallization kinetics of a medium carbon microalloyed steel. J Mater Eng Perform, 2014, 23(3): 1077
    [6] Mirzadeh H, Najafizadeh A, Moazeny M. Flow curve analysis of 17-4 PH stainless steel under hot compression test. Metall Mater Trans A, 2009, 40(12): 2950
    [7] Zhang D, Liu Y Z, Zhou L Y, et al. Dynamic recrystallization behavior of GCr15SiMn bearing steel during hot deformation. J Iron Steel Res Int, 2014, 21(11): 1042
    [8] Pu E X, Feng H, Liu M, et al. Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation. J Iron Steel Res Int, 2016, 23(2): 178
    [9] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel. J Appl Phys, 1944, 15(1): 22
    [10] Chen Z Y, Xu S Q, Dong X H. Deformation behavior of AA6063 aluminium alloy after removing friction effect under hot working conditions. Acta Metall Sin (English Lett), 2008, 21(6): 451
    [11] Gao Z Y, Pan T, Wang Z, et al. Hot deformation behavior of a novel Ni-Cr-Mo-B ultra-heavy plate steel by hot compression test. J Iron Steel Res Int, 2015, 22(9): 818
    [12] McQueen H J, Ryan N D. Constitutive analysis in hot working. Mater Sci Eng A, 2002, 322(1-2): 43
    [13] McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state. J Mater Process Technol, 1995, 53(1-2): 293
    [14] Zhao H T, Liu G Q, Xu L. Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel. Mater Scie Eng A, 2013, 559: 262
    [15] Kopp R, Cho M L, de Souza M M. Multi-level simulation of metal-forming processes. Steel Res Int, 1988, 59(4): 161
    [16] Samantaray D, Mandal S, Bhaduri A K. A critical comparison of various data processing methods in simple uni-axial compression testing. Mater Des, 2011, 32(5): 2797
  • 加載中
計量
  • 文章訪問數:  726
  • HTML全文瀏覽量:  222
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-05-02

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com