Preparation and properties of soluble magnesium alloys
-
摘要: 針對傳統可溶性壓裂球材質存在的缺點,采用鑄造法制備性能優異的可溶性鎂合金,系統研究了鋁含量對可溶性鎂合金組織、溶解性能及力學性能的影響.結果表明:可溶性鎂合金組織由α-Mg和β-Mg17Al12相組成,隨著鋁含量的增多,組織中β-Mg17Al12相數量增多,呈連續網狀分布于α相晶界處,并且α晶粒也變得粗大.可溶性鎂合金在氯化鉀(KCl)溶液中可自行溶解,且隨KCl濃度的升高,溶解速率變大,在質量分數為3%的KCl中溶解性能最佳.隨著鋁含量的增加,可溶性鎂合金的溶解速率變大,室溫下溶解速率最高可達7.42 mg·h-1·cm-2.溶解產物粒度分析結果顯示,中值粒徑D50為38.691 μm,溶解產物物相為Mg17Al12和Mg (OH)2.可溶性鎂合金的抗壓強度最高可達430 MPa,變形量為3.0%時試樣斷裂,隨著鋁含量的增加,可溶性鎂合金的塑性降低.Abstract: Based on the shortcomings of the traditional fracturing ball, the soluble magnesium alloy with excellent properties was prepared by casting. This study investigated the effects of aluminum elements content on the microstructure, solubility, and mechanical properties. The results reveal that the microstructure of soluble magnesium alloy comprises the following two phases:α-Mg and β-Mg17Al12. β-Mg17Al12 increases with an increase in aluminum content and continuously distributes in the α-Mg grain boundary. In addition, α-Mg becomes coarse. The soluble magnesium alloy could dissolve in the KCl solution, and the dissolution rate increases with an increase in KCl concentration until the rate reaches a maximum at 3% (mass fraction) KCl; the rate subsequently decreases after reaching this maximum. In addition, the dissolution rate increases with an increase in aluminum content until the dissolution rate reaches 7.42 mg·h-1·cm-2. The corrosion product of the soluble magnesium alloy is finer, and the median grain size is 38.691 μm, which ensures a smooth discharge of products, and the corrosion products are Mg17Al12 and Mg(OH)2. The compressive strength of the soluble magnesium alloy could reach 430 MPa and the material breaks when the deformation reaches 3.0%, which the plasticity of this material reduces with increased aluminum content.
-
Key words:
- soluble magnesium alloy /
- microstructure /
- solubility /
- compressive strength
-
參考文獻
[3] Xu Z Y, Agrawal G, Salinas B J. Smart Nanostructured Materials Deliver High Reliability Completion Tools for Gas Shale Fracturing // SPE Annual Technical Conference and Exhibition. Denver, 2011: 1 [4] Pei X H, Wei S B, Shi B R, et al. Disintegrating fracturing ball used in ball injection sliding sleeve for staged fracturing. Pet Explor Dev, 2014, 41(6): 805 [5] Salinas B J, Xu Z Y, Richard B M. Optimizing gas lift operations using disintegrable gas lift valve plugs // SPE Artificial Lift Conference & Exhibition-North America. Houston, 2014: 1 [8] Salinas B J, Xu Z Y, Agrawal G, et al.Controlled electrolytic metallics: an interventionless nanostructured platform // SPE International Oilfield Nanotechnology Conference and Exhibition. Noordwijk, 2012: 1 [11] Wang Q L, Zhang L B, Hu J Q, et al. A dynamic and non-linear risk evaluation methodology for high-pressure manifold in shale gas fracturing. J Nat Gas Sci Eng, 2016, 29: 7 [12] Zhao X L, Rui Z H, Liao X W, et al. The qualitative and quantitative fracture evaluation methodology in shale gas reservoir. J Nat Gas Sci Eng, 2015, 27: 486 [15] Zhang X, Li Y J, Zhang K, et al. Corrosion and electrochemical behavior of Mg-Y alloys in 3.5% NaCl solution. Trans Noferrous Met Soc China, 2013, 23(5): 1226 [16] Sharma A K, Suresh M R, Bhojraj H, et al. Electroless nickel plating on magnesium alloy. Met Finish, 1998, 96(3): 10 [17] Fairweather W A. Electroless nickel plating of magnesium. Trans IMF, 1997, 75(3): 113 [19] Pardo A, Merino M C, Coy A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5wt.% NaCl. Corros Sci, 2008, 50(3): 823 [20] Jia R L, Yan C W, Wang F H. Influence of Al content on the atmospheric corrosion behavior of magnesium-aluminum alloys. J Mater Sci Technol, 2009, 25(2): 225 [21] Ababy G M, Hilal N H, Rabiee M E, et al. Effect of Al content on the corrosion behavior of Mg-Al alloys in aqueous solutions of different pH. Electrochim Acta, 2010, 55(22): 6651 -

計量
- 文章訪問數: 1025
- HTML全文瀏覽量: 343
- PDF下載量: 28
- 被引次數: 0