<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

利用超重力分離鋁熔體中的夾雜顆粒

宋高陽 宋波 楊玉厚 楊占兵 李龍飛 馬良

宋高陽, 宋波, 楊玉厚, 楊占兵, 李龍飛, 馬良. 利用超重力分離鋁熔體中的夾雜顆粒[J]. 工程科學學報, 2018, 40(2): 177-183. doi: 10.13374/j.issn2095-9389.2018.02.007
引用本文: 宋高陽, 宋波, 楊玉厚, 楊占兵, 李龍飛, 馬良. 利用超重力分離鋁熔體中的夾雜顆粒[J]. 工程科學學報, 2018, 40(2): 177-183. doi: 10.13374/j.issn2095-9389.2018.02.007
SONG Gao-yang, SONG Bo, YANG Yu-hou, YANG Zhan-bing, LI Long-fei, MA Liang. Separation of inclusion particles from aluminum melt by super gravity[J]. Chinese Journal of Engineering, 2018, 40(2): 177-183. doi: 10.13374/j.issn2095-9389.2018.02.007
Citation: SONG Gao-yang, SONG Bo, YANG Yu-hou, YANG Zhan-bing, LI Long-fei, MA Liang. Separation of inclusion particles from aluminum melt by super gravity[J]. Chinese Journal of Engineering, 2018, 40(2): 177-183. doi: 10.13374/j.issn2095-9389.2018.02.007

利用超重力分離鋁熔體中的夾雜顆粒

doi: 10.13374/j.issn2095-9389.2018.02.007
基金項目: 

國家自然科學基金資助項目(51234001);河北省自然科學基金資助項目(E2018402098)

詳細信息
  • 中圖分類號: TF19

Separation of inclusion particles from aluminum melt by super gravity

  • 摘要: 利用Al-17% Si-4.5% Cu熔體中密度較小的初生硅顆粒模擬金屬熔體內部的夾雜物,并采用超重力場分離熔體中的夾雜顆粒,研究了不同重力系數條件下,金屬熔體中夾雜物的分離規律.實驗結果表明:經過超重力處理后,初生硅顆粒在試樣上部區域發生明顯的偏聚現象,試樣內部出現無初生硅顆粒區域,且隨著重力系數的增加,無初生硅顆粒的區域面積逐漸增大,說明重力系數越大,硅顆粒在試樣上部區域的聚集程度越好.隨著重力系數的增大,試樣的凈化效率逐漸升高,當重力系數(G)為500時,試樣的凈化率達到了84.98%.利用DPM離散相模型對超重力場下熔體內部硅顆粒的具體受力情況進行分析,并模擬研究鋁熔體內部硅顆粒在不同重力場中的分離行為.數值模擬結果證明了夾雜顆粒在沿著超重力方向上的運動行為近似符合Stokes運動定律.這表明超重力場可以有效分離金屬熔體中的夾雜物.

     

  • [1] Shu D, Li T X, Sun B D, et al. Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt: Part I. Spherical particles. Metall Mater Trans B, 2000, 31(6): 1527
    [2] He Y J, Li Q L, Liu W. Separating effect of a novel combined magnetic field on inclusions in molten aluminum alloy. Metall Mater Trans B, 2012, 43(5): 1149
    [4] Song G Y, Song B, Yang Z B, et al. Removal of inclusions from molten aluminum by supergravity filtration. Metall Mater Trans B, 2016, 47(6): 3435
    [5] Gaustad G, Olivetti E, Kirchain R. Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour Conservation Recycl, 2012, 58: 79
    [6] Takahashi K, Taniguchi S. Electromagnetic separation of nonmetallic inclusion from liquid metal by imposition of high frequency magnetic field. ISIJ Int, 2003, 43(6): 820
    [8] Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application. Chem Eng J, 2010, 156(3): 588
    [9] Yang Y H, Song B, Song G Y, et al. Enriching and separating primary copper impurity from Pb-3 mass pct Cu melt by super-gravity technology. Metall Mater Trans B, 2016, 47(5): 2714
    [10] Li J W, Guo Z C, Tang H Q, et al. Si purification by solidification of Al-Si melt with super gravity. Trans Nonferrous Met Soc China, 2012, 22(4): 958
    [11] Li J C, Guo Z C. Innovative methodology to enrich britholite (Ca3Ce2[(Si,P) O4]3F) phase from rare-earth-rich slag by super gravity. Metall Mater Trans B, 2014, 45(4): 1272
    [12] Li J C, Guo Z C, Gao J T. Laboratory assessment of isothermal separation of V containing spinel phase from vanadium slag by centrifugal casting. Ironmaking Steelmaking, 2014, 41(9): 710
    [13] Li J C, Guo Z C, Gao J T. Isothermal enriching perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO melt by super gravity. ISIJ Int, 2014, 54(4): 743
    [15] Song G Y, Song B, Yang Y H, et al. Separating behavior of nonmetallic inclusions in molten aluminum under super-gravity field. Metall Mater Trans B, 2015, 46(5): 2190
    [16] Han Y C, Li Q L, Liu W, et al. Effect of electromagnetic vibration on the agglomeration behavior of primary silicon in hypereutectic Al-Si alloy. Metall Mater Trans A, 2012, 43(5): 1400
    [17] Chen K, Hu Z Q, Ding B. Nucleation in metallic melt on the ground and under elevated gravity. J Mater Sci Technol, 1994, 10(4): 307
    [18] Zhao L X, Guo Z C, Wang Z, et al. Influences of super-gravity field on aluminum grain refining. Metall Mater Trans A, 2010, 41(3): 670
    [20] Ogawa T, Watanabe Y, Sato H, et al. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method. Compos Part A: Appl Sci Manuf, 2006, 37(12): 2194
    [22] Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Technol, 1992, 16(4): 209
  • 加載中
計量
  • 文章訪問數:  756
  • HTML全文瀏覽量:  294
  • PDF下載量:  20
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-04-11

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com