<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于微觀機理的頁巖氣運移分析

張鵬偉 胡黎明 溫慶博

張鵬偉, 胡黎明, 溫慶博. 基于微觀機理的頁巖氣運移分析[J]. 工程科學學報, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002
引用本文: 張鵬偉, 胡黎明, 溫慶博. 基于微觀機理的頁巖氣運移分析[J]. 工程科學學報, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002
ZHANG Peng-wei, HU Li-ming, WEN Qing-bo. Micro-mechanism analysis of shale gas migration[J]. Chinese Journal of Engineering, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002
Citation: ZHANG Peng-wei, HU Li-ming, WEN Qing-bo. Micro-mechanism analysis of shale gas migration[J]. Chinese Journal of Engineering, 2018, 40(2): 136-143. doi: 10.13374/j.issn2095-9389.2018.02.002

基于微觀機理的頁巖氣運移分析

doi: 10.13374/j.issn2095-9389.2018.02.002
基金項目: 

清華大學自主科研計劃資助項目(THZ20161080101);國家自然科學基金資助項目(41372352)

詳細信息
  • 中圖分類號: TU42

Micro-mechanism analysis of shale gas migration

  • 摘要: 認識氣體在頁巖孔隙中的運移機理對頁巖氣開采具有重要的科學意義.頁巖作為一種致密巖石,孔隙尺寸分布主要集中在幾納米到百納米之間,小孔隙尺寸與氣體的平均分子自由程在同一個數量級,氣體與孔隙邊壁的碰撞對流動起到控制作用.本文針對頁巖氣開采過程中孔隙中氣體流動過程,建立了考慮氣體滑移、Knudsen擴散、Langmuir等溫吸附、孔隙壓縮等過程的多場耦合控制方程.分析了流態變化對滑移效應的影響,得到了考慮滑移效應的臨界孔徑,并針對實際中不同頁巖儲層有機質含量的差異,分析了解吸機制對頁巖氣產氣率、產氣量的貢獻.研究還表明孔隙壓縮性對產氣率影響顯著,通過考慮開采過程中孔隙壓縮,可以更真實地反映頁巖氣運移過程.

     

  • [3] Amann-Hilddenrand A, Ghanizadeh A, Krooss B M. Transport properties of unconventional gas systems. Mar Pet Geol, 2012, 31(1): 90
    [4] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull, 2012, 96(6): 1099
    [5] Soeder D J. Porosity and permeability of Eastern Devonian gas shale. SPE Form Eval, 1988, 3(1): 116
    [6] Javadpour F. Nanopores and apparent permeability of gas flow in Mudrocks (shales and siltstone). J Can Pet Technol, 2009, 48(8): 16
    [7] Ziarani A S, Aguilera R. Knudsen's permeability correction for tight porous media. Transport Porous Media, 2012, 91(1): 239
    [8] Beskok A, Karniadakis G E. Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng, 1999, 3(1): 43
    [11] Zhang P W, Hu L M, Wen Q B, et al. A multi-flow regimes model for simulating gas transport in shale matrix. Géotechnique Lett, 2015, 5(3): 231
    [12] Zhang P W, Hu L M, Meegoda J N, et al. Micro/nano-pore network analysis of gas flow in shale matrix. Sci Rep, 2015, 5: 13501
    [13] Zhang P W, Hu L M, Meegoda J N. Pore-scale simulation and sensitivity analysis of apparent gas permeability in shale matrix. Mater, 2017, 10(2), 104
    [15] Hill D G, Nelson C R. Gas productive fractured shales: an overview and update. Gas TIPS, 2000, 6(3): 4
    [18] Gilron J, Soffer A. Knudsen diffusion in microporous carbon membranes with molecular sieving character. J Membr Sci, 2002, 209(2): 339
    [19] Freeman C M, Moridis G J, Blasingame T. A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems. Transport Porous Media, 2011, 90(1): 253
    [20] Palmer I, Mansoori J. How permeability depends on stress and pore pressure in coalbeds: a new model // SPE Annual Technical Conference and Exhibition. Denver, 1996: 36737
    [21] Bustin A M M, Bustin R M. Importance of rock properties on the producibility of gas shales. Int J Coal Geol, 2012, 103: 132
    [22] Curtis M E, Sondergeld C H, Ambrose R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull, 2012, 96(4): 665
    [23] Cui X J, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bull, 2005, 89(9): 1181
    [24] Pape H, Clauser C, Iffland J. Permeability prediction based on fractal pore-space geometry. Geophysics, 1999, 64(5): 1447
    [25] Freeman C M, Moridis G J, Ilk D, et al. A numerical study of performance for tight gas and shale gas reservoir systems. J Pet Sci Eng, 2013, 108: 22
    [26] Wu Y S, Pruess K, Persoff P. Gas flow in porous media with Klinkenberg effects. Transport Porous Media, 1998, 32(1): 117
    [27] Florence F A, Rushing J A, Newsham K E, et al. Improved permeability prediction relations for low permeability sands. SPE Int, 2007, 107954: 1
    [28] Civan F. Effective correlation of apparent gas permeability in tight porous media. Transport Porous Med, 2009, 82(2): 375
  • 加載中
計量
  • 文章訪問數:  825
  • HTML全文瀏覽量:  417
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-05-06

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com