[1] |
Moskalyk R R, Alfantazi A M. Processing of vanadium:a review. Miner Eng, 2003, 16(9):793
|
[2] |
Lee D G, Lee K, Lee S. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation. Surf Coat Technol, 2006, 201(3-4):1296
|
[3] |
Zhao W M, Liu Z X, Ju Z L, et al. Effects of vanadium and rareearth on carbides and properties of high chromium cast iron. Mater Sci Forum, 2008, 575-578:1414
|
[4] |
Ye F X, Hojamberdiev M, Xu Y H, et al. (Fe,Cr)7C3/Fe surface gradient composite:microstructure, microhardness, and wear resistance. Mater Chem Phys, 2014, 147(3):823
|
[6] |
Brady M P, Yamamoto Y, Santella M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. Scripta Mater, 2007, 57(12):1117
|
[7] |
Kusumoto K, Shimizu K, Yaer X, et al. High erosion-oxidation performance of Fe-based Nb or V containing multi-component alloys with Co addition at 1173 K. Mater Des, 2015, 88:366
|
[8] |
Gao P H, Cao S T, Li J P, et al. High temperature oxidation resistance of M42C stainless steel coatings deposited on the surface of cast iron through atmospheric plasma spraying. J Alloys Compd, 2016, 684:188
|
[9] |
Abe F, Kutsumi H, Haruyama H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment. Corros Sci, 2016, 114:1
|
[10] |
Li D S, Dai Q X, Cheng X N, et al. High-temperature oxidation resistance of austenitic stainless steel Crl8Nil 1Cu3Al3MnNb. J Iron Steel Res Int, 2012, 19(5):74
|
[11] |
Li R, Zhou Z, He D Y, et al. Microstructure and high-temperature oxidation behavior of wire-arc sprayed Fe-based coatings. Surf Coat Technol, 2014, 251:186
|
[12] |
Krüger M. High temperature compression strength and oxidation of a V-9Si-13B alloy. Scripta Mater, 2016, 121:75
|
[13] |
Luo X X, Yao Z J, Zhang P Z, et al. A study on high temperature oxidation behavior of double glow plasma surface metallurgy Fe-Al-Cr alloyed layer on Q235 steel. Appl Surf Sci, 2014, 305:259
|
[14] |
Chattopadhyay B, Wood G C. The transient oxidation of alloys. Oxid Met, 1970, 2(4):373
|
[15] |
Huntz A M, Schütze M. Stresses generated during oxidation sequences and high temperature fracture. Mater High Temp, 1994, 12(2-3):151
|
[16] |
Yang F, Liu B, Fang D N. Analysis on high-temperature oxidation and growth stress of iron-based alloy using phase field method. Appl Math Mech, 2011, 32(6):757
|
[17] |
Panicaud B, Grosseau-Poussard J L, Dinhut J F. On the growth strain origin and stress evolution prediction during oxidation of metals. Appl Surf Sci, 2006, 252(16):5700
|
[18] |
Chen J W, Jiang Z, Mu H, et al. Simulation on the thermal stress of super304H oxidation scale at 600℃. Adv Mater Res, 2015, 1065-1069:1934
|
[19] |
Ren C, He Y D, Wang D R. Fabrication and characteristics of YSZ-YSZ/Al2O3 double-layer TBC. Oxid Met, 2011, 75(5-6):325
|
[20] |
Xu C H, Gao W. Pilling-bedworth ratio for oxidation of alloys. Mater Res Innovations, 2000, 3(4):231
|