<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高釩耐磨合金在不同冷卻方式下的高溫氧化行為

陳平虎 李瑞卿 曾松盛 李曉謙

陳平虎, 李瑞卿, 曾松盛, 李曉謙. 高釩耐磨合金在不同冷卻方式下的高溫氧化行為[J]. 工程科學學報, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011
引用本文: 陳平虎, 李瑞卿, 曾松盛, 李曉謙. 高釩耐磨合金在不同冷卻方式下的高溫氧化行為[J]. 工程科學學報, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011
CHEN Ping-hu, LI Rui-qing, ZENG Song-sheng, LI Xiao-qian. High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches[J]. Chinese Journal of Engineering, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011
Citation: CHEN Ping-hu, LI Rui-qing, ZENG Song-sheng, LI Xiao-qian. High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches[J]. Chinese Journal of Engineering, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011

高釩耐磨合金在不同冷卻方式下的高溫氧化行為

doi: 10.13374/j.issn2095-9389.2018.01.011
基金項目: 

國家自然科學基金面上項目(51475480, U1637601);中南大學高性能復雜制造國家重點實驗室項目(ZZYJKT2016-03,ZZYJKT2017-01);中南大學研究生自主探索創新項目(2015zzts041)

詳細信息
  • 中圖分類號: TG142.72

High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches

  • 摘要: 研究了950℃高溫下高釩耐磨合金的高溫氧化行為,并研究了在隨爐冷卻和空冷兩種不同冷卻方式下的氧化增重與開裂行為.結果表明:氧化初期材料表面發生“暫態氧化” ,所有元素均參與氧化反應,隨后在爐冷時氧化增重比空冷時的氧化增重要大的多,當氧化8 h后單位面積氧化增重分別為82.7 mg·cm-2與39.1 mg·cm-2,爐冷與空冷氧化增質量相差一倍多.雖然在基體/氧化層界面形成了能起到一定保護作用的50~200 nm厚Cr2O3致密氧化層,但同時也存在疏松氧化層;而爐冷時樣品以生長應力為主,氧化層發生“翹曲”現象,但較少引起氧化層脫落.然而空冷時冷卻速度較大,氧化層內易產生較大熱應力,致使氧化層較易開裂或者脫落.

     

  • [1] Moskalyk R R, Alfantazi A M. Processing of vanadium:a review. Miner Eng, 2003, 16(9):793
    [2] Lee D G, Lee K, Lee S. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation. Surf Coat Technol, 2006, 201(3-4):1296
    [3] Zhao W M, Liu Z X, Ju Z L, et al. Effects of vanadium and rareearth on carbides and properties of high chromium cast iron. Mater Sci Forum, 2008, 575-578:1414
    [4] Ye F X, Hojamberdiev M, Xu Y H, et al. (Fe,Cr)7C3/Fe surface gradient composite:microstructure, microhardness, and wear resistance. Mater Chem Phys, 2014, 147(3):823
    [6] Brady M P, Yamamoto Y, Santella M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. Scripta Mater, 2007, 57(12):1117
    [7] Kusumoto K, Shimizu K, Yaer X, et al. High erosion-oxidation performance of Fe-based Nb or V containing multi-component alloys with Co addition at 1173 K. Mater Des, 2015, 88:366
    [8] Gao P H, Cao S T, Li J P, et al. High temperature oxidation resistance of M42C stainless steel coatings deposited on the surface of cast iron through atmospheric plasma spraying. J Alloys Compd, 2016, 684:188
    [9] Abe F, Kutsumi H, Haruyama H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment. Corros Sci, 2016, 114:1
    [10] Li D S, Dai Q X, Cheng X N, et al. High-temperature oxidation resistance of austenitic stainless steel Crl8Nil 1Cu3Al3MnNb. J Iron Steel Res Int, 2012, 19(5):74
    [11] Li R, Zhou Z, He D Y, et al. Microstructure and high-temperature oxidation behavior of wire-arc sprayed Fe-based coatings. Surf Coat Technol, 2014, 251:186
    [12] Krüger M. High temperature compression strength and oxidation of a V-9Si-13B alloy. Scripta Mater, 2016, 121:75
    [13] Luo X X, Yao Z J, Zhang P Z, et al. A study on high temperature oxidation behavior of double glow plasma surface metallurgy Fe-Al-Cr alloyed layer on Q235 steel. Appl Surf Sci, 2014, 305:259
    [14] Chattopadhyay B, Wood G C. The transient oxidation of alloys. Oxid Met, 1970, 2(4):373
    [15] Huntz A M, Schütze M. Stresses generated during oxidation sequences and high temperature fracture. Mater High Temp, 1994, 12(2-3):151
    [16] Yang F, Liu B, Fang D N. Analysis on high-temperature oxidation and growth stress of iron-based alloy using phase field method. Appl Math Mech, 2011, 32(6):757
    [17] Panicaud B, Grosseau-Poussard J L, Dinhut J F. On the growth strain origin and stress evolution prediction during oxidation of metals. Appl Surf Sci, 2006, 252(16):5700
    [18] Chen J W, Jiang Z, Mu H, et al. Simulation on the thermal stress of super304H oxidation scale at 600℃. Adv Mater Res, 2015, 1065-1069:1934
    [19] Ren C, He Y D, Wang D R. Fabrication and characteristics of YSZ-YSZ/Al2O3 double-layer TBC. Oxid Met, 2011, 75(5-6):325
    [20] Xu C H, Gao W. Pilling-bedworth ratio for oxidation of alloys. Mater Res Innovations, 2000, 3(4):231
  • 加載中
計量
  • 文章訪問數:  705
  • HTML全文瀏覽量:  214
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-06-07

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com