<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

釩對高鐵制動盤鋼中碳化物析出及力學性能的影響

吳丹 王福明 程錦 李長榮

吳丹, 王福明, 程錦, 李長榮. 釩對高鐵制動盤鋼中碳化物析出及力學性能的影響[J]. 工程科學學報, 2018, 40(1): 68-75. doi: 10.13374/j.issn2095-9389.2018.01.009
引用本文: 吳丹, 王福明, 程錦, 李長榮. 釩對高鐵制動盤鋼中碳化物析出及力學性能的影響[J]. 工程科學學報, 2018, 40(1): 68-75. doi: 10.13374/j.issn2095-9389.2018.01.009
WU Dan, WANG Fu-ming, CHENG Jin, LI Chang-rong. Effect of V on carbide precipitation behavior and mechanical properties of brake disc steel for high-speed trains[J]. Chinese Journal of Engineering, 2018, 40(1): 68-75. doi: 10.13374/j.issn2095-9389.2018.01.009
Citation: WU Dan, WANG Fu-ming, CHENG Jin, LI Chang-rong. Effect of V on carbide precipitation behavior and mechanical properties of brake disc steel for high-speed trains[J]. Chinese Journal of Engineering, 2018, 40(1): 68-75. doi: 10.13374/j.issn2095-9389.2018.01.009

釩對高鐵制動盤鋼中碳化物析出及力學性能的影響

doi: 10.13374/j.issn2095-9389.2018.01.009
基金項目: 

國家自然科學基金資助項目(51674020)

詳細信息
  • 中圖分類號: TG142.1

Effect of V on carbide precipitation behavior and mechanical properties of brake disc steel for high-speed trains

  • 摘要: 隨著列車時速不斷提高,制動盤承受的熱負荷不斷增大,這對制動盤材料提出了更高的要求.為了提高制動盤鋼的機械性能及耐熱疲勞性,釩元素被添加到制動盤鋼中.本文研究了不同淬火溫度時V含量對Cr-Mo-V系制動盤鋼組織及力學性能的影響,并通過Thermo-Calc熱力學軟件、碳復型、透射電鏡、能譜分析等方法對不同V含量時析出相的演變規律進行研究.結果表明,增加釩含量使高溫析出的V(C,N)含量增加,細化奧氏體晶粒和回火馬氏體組織.淬-回火態析出相主要為V(C,N)、(Mo,V)C、M7C3和M23C6.隨釩含量增加,大尺寸M23C6和M7C3的析出被抑制,對韌性損害降低;小尺寸(Mo,V)C含量增多,析出強化效果增強.淬火溫度為880~900℃時,增加釩含量能細化馬氏體和減少大尺寸碳化物,彌補了析出強化對韌性的損害,故沖擊功變化不大.淬火溫度為920~940℃時,提高釩含量促使(Mo,V)C量急劇增加,沖擊功快速下降.實驗鋼淬火溫度不應超過900℃.

     

  • [1] Yang Z Y, Han J M, Li W J, et al. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs. Eng Fail Anal, 2013, 34:121
    [2] Li Z Q, Han J M, Yang Z Y, et al. Analyzing the mechanisms of thermal fatigue and phase change of steel used in brake discs. Eng Fail Anal, 2015, 57:202
    [3] Li Z Q, Han J M, Yang Z Y, et al. The effect of braking energy on the fatigue crack propagation in railway brake discs. Eng Fail Anal, 2014, 44:272
    [4] Degallaix G, Dufrénoy P, Wong J, et al. Failure mechanisms of TGV brake discs. Key Eng Mater, 2007, 345-346:697
    [5] Wu S C, Zhang S Q, Xu Z W. Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc. Int J Fatigue, 2016, 87:359
    [6] Li Z Q, Han J M, Li W J, et al. Low cycle fatigue behavior of Cr-Mo-V low alloy steel used for railway brake discs. Mater Des, 2014, 56:146
    [7] Ju J, Fu H G, Fu D M, et al. Effects of Cr and V additions on the microstructure and properties of high-vanadium wear-resistant alloy steel. Ironmaking Steelmaking, 2016:1
    [8] Mejía I, Salas-Reyes A E, Bedolla-Jacuinde A, et al. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel. Mater Sci Eng A, 2014, 616:229
    [10] Wu D Y, Xiao F R, Wang B, et al. Investigation on grain refinement and precipitation strengthening applied in high speed wire rod containing vanadium. Mater Sci Eng A, 2014, 592:102
    [11] Fu L M, Wang H R, Wang W, et al. Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels. Mater Sci Technol, 2011, 27(6):996
    [13] Nafisi S, Amirkhiz B S, Fazeli F, et al. Effect of vanadium addition on the strength of API X100 linepipe steel. ISIJ Int, 2016, 56(1):154
    [14] Gwon H, Kim J K, Shin S, et al. The effect of vanadium microalloying on the microstructure and the tensile behavior of TWIP steel. Mater Sci Eng A, 2017, 696:416
    [15] Oh D, Han K, Hong S, et al. Effects of alloying elements on the thermal fatigue properties of the 15wt% Cr ferritic stainless steel weld HAZ. Mater Sci Eng A, 2012, 555:44
    [16] Harada N, Takuma M, Tsujikawa M, et al. Effects of V addition on improvement of heat shock resistance and wear resistance of Ni-Cr-Mo cast steel brake disc. Wear, 2013, 302(1-2):1444
    [17] Prawoto Y, Jasmawati N, Sumeru K. Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel. J Mater Sci Technol, 2012, 28(5):461
    [19] Asadabad M A, Kheirandish S, Novinrooz A J. Microstructural and mechanical behavior of 4.5Cr-2W-0.25V-0.1C steel. Mater Sci Eng A, 2010, 527(6):1612
    [20] Janovec J, Vyrostkova A, Svoboda M. Influence of tempering temperature on stability of carbide phases in 2.6Cr-0.7Mo-0.3V steel with various carbon content. Metall Mater Trans A, 1994, 25(2):267
    [21] Michaud P, Delagnes D, Lamesle P, et al. The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels. Acta Mater, 2007, 55(14):4877
  • 加載中
計量
  • 文章訪問數:  943
  • HTML全文瀏覽量:  444
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-08-12

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com