<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

利用超重力富集和分離Sn-3% Fe熔體中的雜質元素鐵

楊玉厚 李京京 宋子睿 欒益峰 梁俊威 陳凱 李慧斌 宋波

楊玉厚, 李京京, 宋子睿, 欒益峰, 梁俊威, 陳凱, 李慧斌, 宋波. 利用超重力富集和分離Sn-3% Fe熔體中的雜質元素鐵[J]. 工程科學學報, 2018, 40(1): 41-50. doi: 10.13374/j.issn2095-9389.2018.01.006
引用本文: 楊玉厚, 李京京, 宋子睿, 欒益峰, 梁俊威, 陳凱, 李慧斌, 宋波. 利用超重力富集和分離Sn-3% Fe熔體中的雜質元素鐵[J]. 工程科學學報, 2018, 40(1): 41-50. doi: 10.13374/j.issn2095-9389.2018.01.006
YANG Yu-hou, LI Jing-jing, SONG Zi-rui, LUAN Yi-feng, LIANG Jun-wei, CHEN Kai, LI Hui-bin, SONG Bo. Enriching and separating iron impurity from Sn-3% Fe melt by super gravity[J]. Chinese Journal of Engineering, 2018, 40(1): 41-50. doi: 10.13374/j.issn2095-9389.2018.01.006
Citation: YANG Yu-hou, LI Jing-jing, SONG Zi-rui, LUAN Yi-feng, LIANG Jun-wei, CHEN Kai, LI Hui-bin, SONG Bo. Enriching and separating iron impurity from Sn-3% Fe melt by super gravity[J]. Chinese Journal of Engineering, 2018, 40(1): 41-50. doi: 10.13374/j.issn2095-9389.2018.01.006

利用超重力富集和分離Sn-3% Fe熔體中的雜質元素鐵

doi: 10.13374/j.issn2095-9389.2018.01.006
基金項目: 

國家自然科學基金資助項目(51234001)

詳細信息
  • 中圖分類號: TF814

Enriching and separating iron impurity from Sn-3% Fe melt by super gravity

  • 摘要: 在粗錫精煉過程中引入超重力場,運用超重力技術研究Sn-3% Fe(質量分數)熔體中雜質元素鐵在超重力場中的定向富集和過濾分離的規律,達到提純凈化粗錫的目的.結果表明,對于超重力場G=500以10℃·min-1冷卻速率凝固后的Sn-3% Fe熔體,超重力場極大強化富鐵相在粗錫熔體中的沉降運動,使先析出富鐵相全部富集到試樣的下部區域,上部幾乎找不到富鐵相顆粒.下部尾錫中的鐵質量分數達到4.817%,而上部精錫中的鐵質量分數降低到0.036%,精錫中鐵的脫除率高達98.78%.在超重力場中過濾的Sn-3% Fe熔體可實現富鐵相雜質和精錫液的有效分離,當重力系數大于30時,精錫的回收率隨重力系數的增大而提高.在超重力場G=100,240℃條件下,Sn-3% Fe熔體過濾1 min后,精錫液幾乎全部被分離到坩堝底部,富鐵相雜質被截留在過濾碳氈上部,下部精錫中找不到富鐵相雜質的顆粒,精錫中鐵質量分數降至0.253%,富鐵渣中鐵質量分數高達11.528%.精錫中鐵的脫除率高達91.44%,超重力場中精錫的回收率高達82.69%.

     

  • [2] Lee H Y, Oh J K, Lee D H. Purification of tin by zone refining with development of a new model. Metall Trans B, 1990, 21(3):455
    [6] Ramshaw C, Mallinson R H. Mass Transfer Apparatus and Its Use:Eur Patent, 0002568.1984-6-20
    [7] El-Hadad S, Sato H, Miura-Fujiwara E, et al. Fabrication of Al-Al3Ti/Ti3Al functionally graded materials under a centrifugal force. Materials, 2010, 3(9):4639
    [8] Watanabe Y, Hattori Y, Sato H. Distribution of microstructure and cooling rate in Al-Al2Cu functionally graded materials fabricated by a centrifugal method. J Mater Process Technol, 2015, 221:197
    [10] Watanabe K, Miyakawa O, Takada Y, et al. Casting behavior of titanium alloys in a centrifugal casting machine. Biomaterials, 2003, 24(10):1737
    [11] Chirita G, Soares D, Silva F S. Advantages of the centrifugal casting technique for the production of structural components with Al-Si alloys. Mater Des, 2008, 29(1):20
    [12] Liu K, Ma Y C, Gao M, et al. Single step centrifugal casting TiAl automotive valves. Intermetallics, 2005, 13(9):925
    [14] Miki Y, Kitaoka H, Sakuraya T, et al. Mechanism for separating inclusions from molten steel stirred with a rotating electro-magnetic field. ISIJ Int, 1992, 32(1):142
    [15] Li J C, Guo Z C, Gao J T. Isothermal enriching perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO melt by super gravity. ISIJ Int, 2014, 54(4):743
    [16] Li J C, Guo Z C. Innovative methodology to enrich britholite (Ca3Ce2[(Si,P)O4]3F) phase from rare-earth-rich slag by super gravity. Metall Mater Trans B, 2014, 45(4):1272
    [17] Song G Y, Song B, Yang Y H, et al. Separating behavior of nonmetallic inclusions in molten aluminum under super-gravity field. Metall Mater Trans B, 2015, 46(5):2190
    [18] Yang Y H, Song B, Song G Y, et al. Enriching and separating primary copper impurity from Pb-3 mass pct Cu melt by supergravity technology. Metall Mater Trans B, 2016, 47(5):2714
    [19] Kumar K C H, Wollants P, Delaey L. Thermodynamic evaluation of Fe-Sn phase diagram. Calphad, 1996, 20(2):139
    [20] Watanabe Y, Inaguma Y, Sato H, et al. A novel fabrication method for functionally graded materials under centrifugal force:the centrifugal mixed-powder method. Materials, 2009, 2(4):2510
    [21] McNown J S, Malaika J. Effects of particle shape on settling velocity at low Reynolds numbers. Eos Trans AGU, 1950, 31(1):74
    [23] Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application. Chem Eng J, 2010, 156(3):588
  • 加載中
計量
  • 文章訪問數:  853
  • HTML全文瀏覽量:  280
  • PDF下載量:  18
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-06-01

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com