<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于不同保溫措施下的鐵水包熱狀態模擬分析

袁飛 楊光 徐安軍 馮凱

袁飛, 楊光, 徐安軍, 馮凱. 基于不同保溫措施下的鐵水包熱狀態模擬分析[J]. 工程科學學報, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005
引用本文: 袁飛, 楊光, 徐安軍, 馮凱. 基于不同保溫措施下的鐵水包熱狀態模擬分析[J]. 工程科學學報, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005
YUAN Fei, YANG Guang, XU An-jun, FENG Kai. Thermal state simulation analysis of molten iron ladle based on different insulation measures[J]. Chinese Journal of Engineering, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005
Citation: YUAN Fei, YANG Guang, XU An-jun, FENG Kai. Thermal state simulation analysis of molten iron ladle based on different insulation measures[J]. Chinese Journal of Engineering, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005

基于不同保溫措施下的鐵水包熱狀態模擬分析

doi: 10.13374/j.issn2095-9389.2018.01.005
基金項目: 

國家重點研發計劃課題資助項目(2016YFB0601301);國家自然科學基金資助項目(51674030)

詳細信息
  • 中圖分類號: TF703.7

Thermal state simulation analysis of molten iron ladle based on different insulation measures

  • 摘要: 在鐵鋼界面現有模式下的鐵水運輸過程中,由于鐵水包運行周期及保溫效果不夠理想,導致在高爐接鐵時鐵包耐材溫度低,熱狀態差,使得鐵水在鐵水包內的熱量損失較大.減小鐵水溫降能有效防止鐵水包結殼結瘤,降低離線烘烤頻率,間接提高鐵水包周轉率;同時在轉爐冶煉過程中,低溫鐵水將嚴重影響廢鋼的加入量和吹氧等操作.由此可見,鐵水溫度控制是鋼鐵企業節能降耗和高效有序生產的關鍵因素之一.為了減小鐵水溫降,本文建立了多種不同保溫措施情況下的鐵水包傳熱模型,通過fluent軟件對各模型在不同空包時間情況下的溫度場進行數值計算,分析不同保溫措施及空包時間下熱狀態對鐵水溫降的影響規律.分析結果表明:無保溫措施的情況下空包時間由5 h縮短至3 h能降低下一周期鐵水溫降2.2 K·h-1;空包階段最合理的保溫措施為增設6 mm左右絕熱層并加包蓋,能提高工作層平均溫度約155 K,在空包3~5 h內能減小鐵水溫降3.4~3.7 K·h-1.該結論為鐵水包空包階段采取合理保溫措施及不同保溫情況下空包運行時間控制提供了理論指導.

     

  • [1] Tian H Y, Chen F R, Xie R J, et al. Finite element analysis of 100 t hot metal ladle in process of tipping. J Iron Steel Res Int, 2010, 17(11):19
    [6] Huang B F, Tian N Y, Ma Z W, et al. Control model of multifunctional hot metal ladles. J Iron Steel Res Int, 2016, 23(12):1262
    [7] Huang B F, Tian N Y, Shi Z, et al. Material flow control technology of ironmaking and steelmaking interface. J Cent South Univ, 2014, 21(9):3559
    [9] Tripathi A, Saha J K, Singh J B, et al. Numerical simulation of heat transfer phenomenon in steel making ladle. ISIJ Int, 2012, 52(9):1591
    [10] Kabakov Z K, Pakholkova M A. Reducing the loss of heat from steel in steel-pouring ladles. Metallurgist, 2013, 56(9-10):670
    [12] Kochubeev Y N, Kungurtsev V N, Mironova L V, et al. A technology for production of composite refractory materials for the lining of steel ladles. Refract Ind Ceram, 2005, 46(2):81
    [14] Wu P F, Xu A J, Tian N Y, et al. Steel temperature compensating model with multi-factor coupling based on ladle thermal state. J Iron Steel Res Int, 2012, 19(5):9
    [15] Martynenko G M, Maltsev S M, Zabolotnyi S A. Ceramoconcrete refractory and heat-insulating components in ferrous and nonferrous metallurgy. Refract Ind Ceram, 2009, 50(3):163
    [17] Fredman T P. Heat transfer in steelmaking ladle refractories and steel temperature. Scand J Metall, 2000, 29(6):232
    [18] Yu J K, Han L. Preparation of nanoporous thermal insulating materials and their application as ladle linings. China Refract, 2014, 23(4):13
    [19] Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period. Metall Mater Trans B, 2001, 32(4):733
    [21] Li G F, Liu J, Jiang G Z, et al. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv Mech Eng, 2015, 7(4):1
    [22] Gleiser M, Wilflingseder F, Eder J. Concepts of refractory lining for pig-iron ladles. Refract Ind Ceram, 2007, 48(2):77
    [23] Liu S W, Yu J K, Mao F X. Thermal behavior modeling of interior refractory lining of torpedo-ladle by finite element method. Adv Mater Res, 2011, 282-283:444
    [24] Glaser B, Görnerup M, Du S C. Thermal modelling of the ladle preheating process. Steel Res Int, 2011, 82(12):1425
    [25] Gu Z X, Xu A J, Chang J B, et al. Optimization of the production organization pattern in Tangshan Iron and Steel Co. Ltd. J Iron Steel Res Int, 2014, 21(Suppl 1):17
    [26] Zhou J A, Xie J B, Wang B, et al. New insight into investigation of thermal transfer of molten steel inside a ladle with vacuum shell. J Therm Anal Calorim, 2017, 128(1):481
    [28] Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)-volume of fluid (VOF) coupled model. JOM, 2015, 67(7):1459
    [29] Morales R D, Garcia-Hernandez S, Barreto J D J, et al. Multiphase flow modeling of slag entrainment during ladle change-over operation. Metall Mater Trans B, 2016, 47(4):2595
    [30] Fredman T P, Torrkulla J, Saxén H. Two-dimensional dynamic simulation of the thermal state of ladles. Metall Mater Trans B, 1999, 30(2):323
    [32] Visloguzova É A, Kashcheev I D, Serova L V, et al. Corundumpericlase-carbon refractories for lining steel-pouring ladles. Refract Ind Ceram, 2010, 51(1):9
  • 加載中
計量
  • 文章訪問數:  709
  • HTML全文瀏覽量:  332
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-06-12

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com