[1] |
Tian H Y, Chen F R, Xie R J, et al. Finite element analysis of 100 t hot metal ladle in process of tipping. J Iron Steel Res Int, 2010, 17(11):19
|
[6] |
Huang B F, Tian N Y, Ma Z W, et al. Control model of multifunctional hot metal ladles. J Iron Steel Res Int, 2016, 23(12):1262
|
[7] |
Huang B F, Tian N Y, Shi Z, et al. Material flow control technology of ironmaking and steelmaking interface. J Cent South Univ, 2014, 21(9):3559
|
[9] |
Tripathi A, Saha J K, Singh J B, et al. Numerical simulation of heat transfer phenomenon in steel making ladle. ISIJ Int, 2012, 52(9):1591
|
[10] |
Kabakov Z K, Pakholkova M A. Reducing the loss of heat from steel in steel-pouring ladles. Metallurgist, 2013, 56(9-10):670
|
[12] |
Kochubeev Y N, Kungurtsev V N, Mironova L V, et al. A technology for production of composite refractory materials for the lining of steel ladles. Refract Ind Ceram, 2005, 46(2):81
|
[14] |
Wu P F, Xu A J, Tian N Y, et al. Steel temperature compensating model with multi-factor coupling based on ladle thermal state. J Iron Steel Res Int, 2012, 19(5):9
|
[15] |
Martynenko G M, Maltsev S M, Zabolotnyi S A. Ceramoconcrete refractory and heat-insulating components in ferrous and nonferrous metallurgy. Refract Ind Ceram, 2009, 50(3):163
|
[17] |
Fredman T P. Heat transfer in steelmaking ladle refractories and steel temperature. Scand J Metall, 2000, 29(6):232
|
[18] |
Yu J K, Han L. Preparation of nanoporous thermal insulating materials and their application as ladle linings. China Refract, 2014, 23(4):13
|
[19] |
Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period. Metall Mater Trans B, 2001, 32(4):733
|
[21] |
Li G F, Liu J, Jiang G Z, et al. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv Mech Eng, 2015, 7(4):1
|
[22] |
Gleiser M, Wilflingseder F, Eder J. Concepts of refractory lining for pig-iron ladles. Refract Ind Ceram, 2007, 48(2):77
|
[23] |
Liu S W, Yu J K, Mao F X. Thermal behavior modeling of interior refractory lining of torpedo-ladle by finite element method. Adv Mater Res, 2011, 282-283:444
|
[24] |
Glaser B, Görnerup M, Du S C. Thermal modelling of the ladle preheating process. Steel Res Int, 2011, 82(12):1425
|
[25] |
Gu Z X, Xu A J, Chang J B, et al. Optimization of the production organization pattern in Tangshan Iron and Steel Co. Ltd. J Iron Steel Res Int, 2014, 21(Suppl 1):17
|
[26] |
Zhou J A, Xie J B, Wang B, et al. New insight into investigation of thermal transfer of molten steel inside a ladle with vacuum shell. J Therm Anal Calorim, 2017, 128(1):481
|
[28] |
Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)-volume of fluid (VOF) coupled model. JOM, 2015, 67(7):1459
|
[29] |
Morales R D, Garcia-Hernandez S, Barreto J D J, et al. Multiphase flow modeling of slag entrainment during ladle change-over operation. Metall Mater Trans B, 2016, 47(4):2595
|
[30] |
Fredman T P, Torrkulla J, Saxén H. Two-dimensional dynamic simulation of the thermal state of ladles. Metall Mater Trans B, 1999, 30(2):323
|
[32] |
Visloguzova É A, Kashcheev I D, Serova L V, et al. Corundumpericlase-carbon refractories for lining steel-pouring ladles. Refract Ind Ceram, 2010, 51(1):9
|