<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

硫酸渣脫硫制備高品質鐵精礦研究進展

左豪恩 溫建康 崔興蘭 武彪 陳勃偉 尚鶴

左豪恩, 溫建康, 崔興蘭, 武彪, 陳勃偉, 尚鶴. 硫酸渣脫硫制備高品質鐵精礦研究進展[J]. 工程科學學報, 2018, 40(1): 1-8. doi: 10.13374/j.issn2095-9389.2018.01.001
引用本文: 左豪恩, 溫建康, 崔興蘭, 武彪, 陳勃偉, 尚鶴. 硫酸渣脫硫制備高品質鐵精礦研究進展[J]. 工程科學學報, 2018, 40(1): 1-8. doi: 10.13374/j.issn2095-9389.2018.01.001
ZUO Hao-en, WEN Jian-kang, CUI Xing-lan, WU Biao, CHEN Bo-wei, SHANG He. Review of research progress on preparation of high-quality iron concentrate from pyrite cinder by desulphurization[J]. Chinese Journal of Engineering, 2018, 40(1): 1-8. doi: 10.13374/j.issn2095-9389.2018.01.001
Citation: ZUO Hao-en, WEN Jian-kang, CUI Xing-lan, WU Biao, CHEN Bo-wei, SHANG He. Review of research progress on preparation of high-quality iron concentrate from pyrite cinder by desulphurization[J]. Chinese Journal of Engineering, 2018, 40(1): 1-8. doi: 10.13374/j.issn2095-9389.2018.01.001

硫酸渣脫硫制備高品質鐵精礦研究進展

doi: 10.13374/j.issn2095-9389.2018.01.001
基金項目: 

國家科技支撐計劃課題資助項目(2015BAB12B03);青海省123重大科技資助項目(2015GXQ06A)

詳細信息
  • 中圖分類號: X756

Review of research progress on preparation of high-quality iron concentrate from pyrite cinder by desulphurization

  • 摘要: 利用硫酸渣脫硫制備高品質鐵精礦具有良好的的工業利用價值,不僅可以解決燒渣的綜合利用問題,而且可以解決其對環境影響的問題.本文系統介紹了硫酸渣脫硫制備高品質鐵精礦的脫硫技術方法、工藝流程及最新研究進展.硫酸渣脫硫方法主要有化學法、聯合法和生物法.化學法主要包括酸浸、堿浸,聯合法可分為堿浸-酸浸、浮選-磁選、重選-浮選、磁化焙燒-磁選等聯合工藝方法.比較了這些方法的工藝路線及存在的優缺點,提出了生物法具有良好的工業應用前景,展望了該方法未來的研究方向為:高效脫硫菌種的選育,生物脫硫液的循環使用,硫酸渣生物脫硫協同回收有價金屬,生物脫硫過程基礎理論及工程化技術研究等.

     

  • [5] Zheng Y J, Liu Z C. Preparation of monodispersed micaceous iron oxide pigment from pyrite cinders. Powder Technol, 2011, 207(1-3):335
    [6] Alp I, Deveci H, Yazıcı E Y, et al. Potential use of pyrite cinders as raw material in cement production:results of industrial scale trial operations. J Hazard Mater, 2009, 166(1):144
    [8] Abdrakhimov A V, Abdrakhimova E S, Abdrakhimov V Z. Technical properties of roof tiles made of technogenic material with pyrite cinder. Glas Ceram, 2006, 63(3-4):130
    [10] He B B, Tian X K, Sun Y, et al. Recovery of iron oxide concentrate from high-sulfur and low-grade pyrite cinder using an innovative beneficiating process. Hydrometallurgy, 2010, 104(2):241
    [14] Edraki M, Baumgartl T, Manlapig E, et al. Designing mine tailings for better environmental, social and economic outcomes:a review of alternative approaches. J Clean Prod, 2014, 84:411
    [21] Fan X H, Deng Q, Gan M, et al. Effect of biochar as reductant on magnetizing-roasting behavior of pyrite cinder. J Iron Steel Res Int, 2015, 22(5):371
    [22] Xing X D, Zhang J L, Wang Z Y, et al. Reduction of pyrite cinder pellets mixed with coal powder. J Iron Steel Res Int, 2014, 21(7):653
    [23] Liu J, Wen S M, Chen Y, et al. Process optimization and reaction mechanism of removing copper from an Fe-rich pyrite cinder using chlorination roasting. J Iron Steel Res Int, 2013, 20(8):20
    [27] Cui X L, Zuo H E, Wen J K. The effect of pH on bioleaching of deerni pyrite roasting residues as magnetic materials. Key Eng Mater, 2017, 730:226
    [35] Yan H, Chai L Y, Peng B, et al. Reduction roasting of high ironbearing zinc calcine under a CO-CO2 gas:an investigation of the chemical and mineralogical transformations. JOM, 2013, 65(11):1589
    [37] Li C, Sun H H, Bai J, et al. Innovative methodology for comprehensive utilization of iron ore tailings:Part 1. the recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J Hazard Mater, 2010, 174(1-3):71
    [38] Lei C, Yan B, Chen T, et al. Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation. J Clean Prod, 2017, 158:73
    [39] Panda S, Akcil A, Pradhan N, et al. Current scenario of chalcopyrite bioleaching:a review on the recent advances to its heapleach technology. Bioresour Technol, 2015, 196:694
    [40] Zhang X, Feng Y L, Li H R. Enhancement of bio-oxidation of refractory arsenopyritic gold ore by adding pyrolusite in bioleaching system. Trans Nonferrous Met Soc China, 2016, 26(9):2479
    [41] Handayani I, Paisal Y, Soepriyanto S, et al. Biodesulfurization of organic sulfur in Tondongkura coal from Indonesia by multistage bioprocess treatments. Hydrometallurgy, 2017, 168:84
    [42] Conić V T, Vujasinović M M R, Trujić V K, et al. Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans Nonferrous Met Soc China, 2014, 24(11):3688
    [45] Peng N, Peng B, Chai L Y, et al. Recovery of iron from zinc calcines by reduction roasting and magnetic separation. Miner Eng, 2012, 35:57
    [46] Liu A P, Ni W, Wu W. Mechanism of separating pyrite and dolomite by flotation. Int J Miner Metall Mater, 2007, 14(4):291
    [47] Shi Z, Han Y, Zhan G. Study on producing iron ore concentrate by removing sulphur from pyrite cinder with nitric acid leaching. Asian J Chem, 2014, 26(7):2042
    [48] Wang J, Huang Q F, Li T, et al. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria. J Environ Manage, 2015, 159:11
  • 加載中
計量
  • 文章訪問數:  1073
  • HTML全文瀏覽量:  505
  • PDF下載量:  53
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-06-22

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com