<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋁合金表面脈沖電磁場對半連續鑄造晶粒的細化

白慶偉 麻永林 邢淑清 馮艷飛 鮑鑫宇 于文霞

白慶偉, 麻永林, 邢淑清, 馮艷飛, 鮑鑫宇, 于文霞. 鋁合金表面脈沖電磁場對半連續鑄造晶粒的細化[J]. 工程科學學報, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008
引用本文: 白慶偉, 麻永林, 邢淑清, 馮艷飛, 鮑鑫宇, 于文霞. 鋁合金表面脈沖電磁場對半連續鑄造晶粒的細化[J]. 工程科學學報, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008
BAI Qing-wei, MA Yong-lin, XING Shu-qing, FENG Yan-fei, BAO Xin-yu, YU Wen-xia. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing[J]. Chinese Journal of Engineering, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008
Citation: BAI Qing-wei, MA Yong-lin, XING Shu-qing, FENG Yan-fei, BAO Xin-yu, YU Wen-xia. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing[J]. Chinese Journal of Engineering, 2017, 39(12): 1828-1834. doi: 10.13374/j.issn2095-9389.2017.12.008

鋁合金表面脈沖電磁場對半連續鑄造晶粒的細化

doi: 10.13374/j.issn2095-9389.2017.12.008
基金項目: 

國家自然科學基金資助項目(51044002);科技部國際合作資助項目(2010DFB70630)

詳細信息
  • 中圖分類號: TF821

Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing

  • 摘要: 采用一種新型熔體表面脈沖電磁技術對7A04鋁合金半連續鑄造凝固組織細化處理,分析脈沖電磁場對凝固組織及性能的影響.引入勢能的觀點,探討脈沖磁能作用下的晶體形核動力學及初生晶核運動形式.結果表明,經表面脈沖電磁場處理后,凝固組織由晶粒尺寸粗大的玫瑰結構轉變為細小且圓整的球狀結構,鑄錠心部及邊部晶粒尺寸分別下降22.7%和14.2%,強度、塑性均有提高.動力學分析認為,脈沖電磁能降低體系形核所需的臨界吉布斯自由能是增加形核率的重要原因,同時可導致初生α-Al運動的勢能增加,促使初生α-Al顆粒優先到達穩定位置.

     

  • [1] Qi J G, Wang J Z, Du H L, et al. Heredity of aluminum melt by electric pulse modification (Ⅱ). J Iron Steel Res Int, 2007, 14(5):76
    [2] Dobroň P, Chmelík F, Yi S B, et al. Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scripta Mater, 2011, 65(5):424
    [3] Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater Sci Eng A, 2008, 486(1-2):545
    [4] Ghaderi A, Barnett M R. Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater, 2011, 59(20):7824
    [6] Qian M, Ramirez A, Das A. Ultrasonic refinement of magnesium by cavitation:clarifying the role of wall crystals. J Cryst Growth, 2009, 311(14):3708
    [7] Nakada M, Shiohara Y, Flemings M C. Modification ofsolidification structures by pulse electric discharging. ISIJ Int, 1990, 30(1):27
    [8] Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall Trans, 1972, 3(7):1925
    [9] Yin Z X, Gong Y Y, Li B, et al. Refining of pure aluminum cast structure by surface pulsed magneto-oscillation. J Mater Process Tech, 2012, 212(12):2629
    [11] Li Y J, Tao W Z, Yang Y S. Grain refinement of Al-Cu alloy in low voltage pulsed magnetic field. J Mater Process Tech, 2012, 212(4):903
    [12] Chen H, Jie J C,Fu Y, et al. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. T Nonferr Met Soc China, 2014, 24(5):1295
    [13] Ferreira P J, Liu H B, Vander Sande J B. A model for the texture development of high-Tc superconductors under an elevated magnetic field. J Mater Res, 1999, 14(7):2751
    [14] Gong Y Y, Luo J, Jing J X, et al. Structure refinement of pure aluminum by pulse magneto-oscillation. Mater Sci Eng A, 2008, 497(1-2):147
    [15] Chen Y S, Zhang L, Liu W C, et al. Preparation of Mg-Nd-Zn-(Zr) alloys semisolid slurry by electromagnetic stirring. Mater Design, 2016, 95:398
    [17] Terzieff P, Lück R. Magnetic investigations in liquid Al-In. J Alloy Compd, 2003, 360(1-2):205
    [18] Gale W F, Totemeier T C. Smithells Metals Reference Book. 8th Ed. New York:Butterworth-Heinemann, 2004
    [19] Gündüz M, Hunt J D. Solid-liquid surface energy in the Al-Mg system. Acta Mater, 1989, 37(7):1839
    [20] Radjai A, Miwa K, Nishio T. An investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt. Metall Mater Trans A, 1998, 29(5):1477
    [22] Motokawa M, Mogi I, Tagami M, et al. Magnetic levitation experiments in Tohoku University. Physica B, 1998, 256-258:618
    [23] Takagi T, Iwai K, Asai S. Solidified structure of Al alloys by a local imposition of an electromagnetic oscillationg force. ISIJ Int, 2003, 43(6):842
    [25] Xu Z M, Li T X, Zhou Y H. An in situ surface composite produced by electromagnetic force. Mater Res Bull, 2000, 35(14-15):2331
    [26] Yasuda H, Ohnaka I, Kawakami O, et al. Effect of magnetic field on solidification in Cu-Pb monotectic alloys. ISIJ Int, 2003, 43(6):942
    [27] Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater, 1998, 46(11):4067
    [28] Sun Z, Guo M, Verhaeghe F, et al. Magnetic interaction between two non-magnetic particles migrating in a conductive fluid induced by a strong magnetic field-an analytical approach. Prog Electromagn Res, 2010, 103:1
  • 加載中
計量
  • 文章訪問數:  786
  • HTML全文瀏覽量:  249
  • PDF下載量:  17
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-05-03

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com