[1] |
Qi J G, Wang J Z, Du H L, et al. Heredity of aluminum melt by electric pulse modification (Ⅱ). J Iron Steel Res Int, 2007, 14(5):76
|
[2] |
Dobroň P, Chmelík F, Yi S B, et al. Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scripta Mater, 2011, 65(5):424
|
[3] |
Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater Sci Eng A, 2008, 486(1-2):545
|
[4] |
Ghaderi A, Barnett M R. Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater, 2011, 59(20):7824
|
[6] |
Qian M, Ramirez A, Das A. Ultrasonic refinement of magnesium by cavitation:clarifying the role of wall crystals. J Cryst Growth, 2009, 311(14):3708
|
[7] |
Nakada M, Shiohara Y, Flemings M C. Modification ofsolidification structures by pulse electric discharging. ISIJ Int, 1990, 30(1):27
|
[8] |
Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall Trans, 1972, 3(7):1925
|
[9] |
Yin Z X, Gong Y Y, Li B, et al. Refining of pure aluminum cast structure by surface pulsed magneto-oscillation. J Mater Process Tech, 2012, 212(12):2629
|
[11] |
Li Y J, Tao W Z, Yang Y S. Grain refinement of Al-Cu alloy in low voltage pulsed magnetic field. J Mater Process Tech, 2012, 212(4):903
|
[12] |
Chen H, Jie J C,Fu Y, et al. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. T Nonferr Met Soc China, 2014, 24(5):1295
|
[13] |
Ferreira P J, Liu H B, Vander Sande J B. A model for the texture development of high-Tc superconductors under an elevated magnetic field. J Mater Res, 1999, 14(7):2751
|
[14] |
Gong Y Y, Luo J, Jing J X, et al. Structure refinement of pure aluminum by pulse magneto-oscillation. Mater Sci Eng A, 2008, 497(1-2):147
|
[15] |
Chen Y S, Zhang L, Liu W C, et al. Preparation of Mg-Nd-Zn-(Zr) alloys semisolid slurry by electromagnetic stirring. Mater Design, 2016, 95:398
|
[17] |
Terzieff P, Lück R. Magnetic investigations in liquid Al-In. J Alloy Compd, 2003, 360(1-2):205
|
[18] |
Gale W F, Totemeier T C. Smithells Metals Reference Book. 8th Ed. New York:Butterworth-Heinemann, 2004
|
[19] |
Gündüz M, Hunt J D. Solid-liquid surface energy in the Al-Mg system. Acta Mater, 1989, 37(7):1839
|
[20] |
Radjai A, Miwa K, Nishio T. An investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt. Metall Mater Trans A, 1998, 29(5):1477
|
[22] |
Motokawa M, Mogi I, Tagami M, et al. Magnetic levitation experiments in Tohoku University. Physica B, 1998, 256-258:618
|
[23] |
Takagi T, Iwai K, Asai S. Solidified structure of Al alloys by a local imposition of an electromagnetic oscillationg force. ISIJ Int, 2003, 43(6):842
|
[25] |
Xu Z M, Li T X, Zhou Y H. An in situ surface composite produced by electromagnetic force. Mater Res Bull, 2000, 35(14-15):2331
|
[26] |
Yasuda H, Ohnaka I, Kawakami O, et al. Effect of magnetic field on solidification in Cu-Pb monotectic alloys. ISIJ Int, 2003, 43(6):942
|
[27] |
Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater, 1998, 46(11):4067
|
[28] |
Sun Z, Guo M, Verhaeghe F, et al. Magnetic interaction between two non-magnetic particles migrating in a conductive fluid induced by a strong magnetic field-an analytical approach. Prog Electromagn Res, 2010, 103:1
|