Theoretical application and factors influencing casting settlement of FeV50 alloy
-
摘要: 采用近似無限大流體重力沉降原理分析了多期法FeV50合金澆鑄過程渣金分離及澆鑄渣層釩的分布規律,考察了熔渣黏度、沉降粒度、澆鑄溫度、渣層厚度以及保溫制度對渣中釩含量的影響.結果表明,澆鑄渣中釩的賦存形式除了未還原完全的釩氧化物之外,還存在部分未完全沉降的初級合金;合金沉降速度隨合金粒度的增加而增大,隨熔渣黏度的增加而減小.1850℃條件下,當渣層厚度為50 mm,熔渣組分質量分數為65.2% Al2O3、15.5% CaO、14.6% MgO、1.9% Fe2O3、0.9% SiO2時,粒徑為100 μm的合金沉降時間及熔渣上浮時間分別為24.9和1.2 min.基于此,進行澆鑄工藝優化試驗,在渣層厚度35 mm,澆鑄溫度1900℃、熔渣主要成分質量分數Al2O3 60%~65%、CaO 15%~20%、MgO 9%~15%、澆鑄錠模保溫層厚度9 cm的條件下,澆鑄渣中平均TV質量分數由1.39%降低至0.58%.Abstract: The process of separation of slag and alloy and distribution of vanadium in casting slag during the casting process of multiperiod FeV50 preparation were analyzed using the principle of infinite fluid gravitational settling. The effects of slag viscosity, particle size, casting temperature, molten-slag thickness, and insulation system on total vanadium (TV) content in slag were investigated. The analysis demonstrates that vanadium mainly comprises vanadium oxide and incompletely deposited primary ferrovanadium alloy in the casting slag. The sedimentation rate of settlement alloy increases with an increase in the particle size and decreases with an increase in the slag viscosity. The dropping time of FeV50 alloy and floating time of molten slag is 24.9 and 1.2 min, respectively, when the casting conditions are as follows-casting temperature:1850℃, slag layer thickness:50 mm, particle size:100 μm, and slag composition mass fraction:65.2% Al2O3, 15.5% CaO, 14.6% MgO, 1.9% Fe2O3, and 0.9% SiO2. Through optimization experiments, the average vanadium mass content in the slag is reduced from 1.39% to 0.58% for the following casting conditions-slag layer thickness:35 mm, casting temperature:1900℃, slag component:60%-65% Al2O3, 15%-20% CaO, 9%-15% MgO; and casting insulation thickness:9 cm.
-
Key words:
- FeV50 /
- alloy settlement /
- casting /
- Stokes law /
- molten slag
-
參考文獻
[2] Ulmer U, Asano K, Patyk A, et al. Cost reduction possibilities of vanadium-based solid solutions-microstructure, thermodynamic, cyclic and environmental effects of ferrovanadium substitution. J Alloy Compd, 2015, 648:1024 [5] Rohrmann B. Vanadium in South Africa. J S Afr Inst Min Metall,1985, 85(5):141 [7] Post K, Robins R G. Thermodynamic diagrams for the vanadiumwater system at 298.15 K. Electrochim Acta, 1976, 21(6):401 [8] Larson J W. Thermochemistry of vanadium (5+) in aqueous solutions. J Chem Eng Data, 1995, 40(6):1276 [11] Luzhkova I V, Ermakov A N, Avdeeva Y A, et al. Recondensation of ferrovanadium and ferromolybdenum in a low temperature plasma. Russ Metall, 2015, 2015(9):700 [12] Swinbourne D R, Richardson T, Cabalteja F. Understanding ferrovanadium smelting through computational thermodynamics modelling. Miner Process Extract Metall, 2016, 125(1):45 [13] Ivanova E A, Narkevich N A. Coatings dispersely hardened by nitrided ferrovanadium and applied by the electron-beam method. Steel Translation, 2008, 38(10):820 [14] Zhang X P, Kou G J, Wu C J, et al. Effect of ferrovanadium inoculation on microstructure and properties of high speed steel. China Foundry, 2008, 5(2):95 [16] Dou T, Wu Z, Mao J F, et al. Application of commercial ferrovanadium to reduce cost of Ti-V-based BCC phase hydrogen storage alloys. Mater Sci Eng A, 2008, 476(1-2):34 -

計量
- 文章訪問數: 664
- HTML全文瀏覽量: 234
- PDF下載量: 14
- 被引次數: 0