Stylolite fractal characteristics and the influence of stylolite on strength of limestone
-
摘要: 為研究縫合線分形特征及其對石灰巖強度的影響,基于數字圖像處理技術,采用功率譜密度方法和數字圖像盒維數方法分析水平縫合線和垂直縫合線的分形維數,通過實驗和數值模擬研究縫合線對石灰巖強度的影響和石灰巖內部裂紋演化過程.研究結果表明:采用兩種分形分析方法得出縫合線分形維數介于1和2之間,表明縫合線是自然界一種自仿射分形構造,且垂直縫合線的粗糙度較大.縫合線平均弱化石灰巖強度約20%,不同傾角縫合線石灰巖強度沒有明顯的各向異性現象,縫合線對石灰巖彈性模量影響很小.石灰巖失穩破壞過程中,裂紋的萌生發展與縫合線息息相關,縫合線加快了石灰巖的損傷破壞.數值模擬表明縫合線厚度、位置、數量、分形維數等發育因素對石灰巖的強度有著顯著的影響.Abstract: To study the fractal characteristics of stylolite and its influence on the strength of limestone, the fractal dimension of horizontal stylolite and vertical stylolite was analyzed using the power spectral density method and the digital image box dimension method based on digital image processing technology. The influence of the stylolite on the limestone strength and the crack evolution process of the limestone were studied through experimental tests and numerical simulations. The results show that the fractal dimension of stylolite lies between 1 and 2, indicating that the stylolite is a self-affine fractal structure in nature, and the vertical stylolite has a large roughness. The stylolite weakens the strength of limestone by about 20% on average, the strength of limestone with different inclinations of stylolite shows less obvious anisotropy and stylolite has negligible effect on the elastic modulus of limestone. In the failure process of limestone, crack initiation and propagation in limestone is closely related to the stylolite, and the stylolite accelerates the damage and failure of the limestone. Numerical simulations show that the thickness, position, numbers, and fractal dimension of the stylolite have significant effect on the strength of the limestone.
-
Key words:
- stylolite /
- digital image /
- fractal /
- strength /
- anisotropy
-
參考文獻
[1] Xu T, Ranjith P G, Wasantha P L P, et al. Influence of the geometry of partially-spanning joints on mechanical properties of rock in uniaxial compression. Eng Geol, 2013, 167:134 [4] Baron M, Parnell J. Relationships between stylolites and cementation in sandstone reservoirs:examples from the North Sea, U. K. and East Greenland. Sediment Geol, 2007, 194(1-2):17 [6] Gratier J P, Muquet L, Hassani R, et al. Experimental microstylolites in quartz and modeled application to natural stylolitic structures. J Struct Geol, 2005, 27(1):89 [7] Stockdale P B. The stratigraphic significance of solution in rocks. J Geol, 1926, 34(5):399 [8] Ebner M, Koehn D, Toussaint R, et al. The influence of rock heterogeneity on the scaling properties of simulated and natural stylolites. J Struct Geol, 2009, 31(1):72 [9] Renard F, Schmittbuhl J, Gratier J P, et al. Three-dimensional roughness of stylolites in limestones. J Geophys Res, 2004, 109(B3):B03209 [10] Ebner M, Koehn D, Toussaint R, et al. Stress sensitivity of stylolite morphology. Earth Planet Sci Lett, 2009, 277(3-4):394 [11] Rolland A, Toussaint R, Baud P, et al. Modeling the growth of stylolites in sedimentary rocks. J Geophys Res, 2012, 117(6):B06403 [12] Heap M J, Baud P, Reuschle T, et al. Stylolites in limestones:barriers to fluid flow? Geology, 2014, 42(1):51 [13] López-Buendía A M, Guillem C, Cuevas J M, et al. Natural stone reinforcement of discontinuities with resin for industrial processing. Eng Geol, 2013, 166:39 [18] Hao S W, Wang H Y, Xia M F, et al. Relationship between strain localization and catastrophic rupture. Theor Appl Fract Mech, 2007, 48(1):41 [19] Baud P, Rolland A, Heap M, et al. Impact of stylolites on the mechanical strength of limestone. Tectonophysics, 2016, 690:4 -

計量
- 文章訪問數: 807
- HTML全文瀏覽量: 202
- PDF下載量: 12
- 被引次數: 0