Study on axial compressive bearing capacity of composite shear wall with double-skin steel plate
-
摘要: 首先對雙鋼板混凝土組合剪力墻中的鋼板進行了屈曲理論分析,對核心受約束混凝土進行了受力分析.以北京中國尊核心筒結構底部剪力墻為原型,進行了1/4縮尺模型的雙鋼板混凝土組合剪力墻試件和內置鋼板混凝土組合剪力墻的軸壓性能試驗,對比分析其荷載-位移曲線、軸壓承載力等.考慮到鋼板屈曲對鋼板軸壓承載力的影響以及受約束混凝土軸心抗壓強度的提高,提出了雙鋼板混凝土組合剪力墻軸壓承載力的計算公式,與應用其他計算方法計算得到的試驗試件的軸壓承載力相比,本文提出的計算公式的計算結果與試驗結果吻合度最高.結合其他文獻中雙鋼板混凝土組合剪力墻軸壓性能試驗的相關數據進行驗證,表明利用本論文提出的計算公式得到的軸壓承載力計算值與試驗結果吻合較好.Abstract: This study conducted a steel-plate buckling analysis and a stress analysis of confined core concrete in a composite shear wall with a double-skin steel plate. Using the bottom shear wall of a core tube in the Beijing Chinese Statue as a prototype, the study tested the 1/4-scale concrete composite shear wall with a double-skin steel plate and a composite shear wall with an embedded steel plate with respect to axial compression, and then compared and analyzed the axial bearing capacity and load-displacement curves. Considering the influence of steel-plate buckling on the axial bearing capacity and the improved compressive strength of confined concrete, this paper proposes a calculation formula for the bearing capacity of a composite shear wall with a double-skin steel plate. Comparing this calculated values with those of other methods, the calculated values of this proposed method fits best. Based on relevant data in the literature regarding axial compression performance tests of composite shear walls with a double-skin steel plate, the axial compressive bearing capacity values obtained by this proposed formula are in good agreement with experimental results.
-
參考文獻
[2] Yan J B, Liu X M, Liew J Y R, et al. Steel-concrete-steel sandwich system in Arctic offshore structure:materials, experiments, and design. Mater Des, 2016, 91:111 [3] Wright H D, Gallocher S C. The behavior of composite walling under construction and service loading. J Construction Steel Res, 1995, 35(3):257 [4] Wright H. The axial load behaviour of composite walling. J Construction Steel Res, 1998, 45(3):353 [5] Mydin M A O, Wang Y C. Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression. Thin-Walled Struct, 2011, 49(1):66 [6] Uy B, Bradford M A. Elastic local buckling of steel plates in composite steel-concrete members. Eng Struct, 1996, 18(3):193 [7] Liang Q Q, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns. Comput Struct, 2000, 75(5):479 [8] Huang Z Y, Liew J Y R. Compressive resistance of steel-concretesteel sandwich composite walls with J-hook connectors. J Constructional Steel Res, 2016, 124:142 [14] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng, 1998, 114(8):1804 [19] The Standards Policy and Strategy Committee. BS EN 1994-1-1:2004 Eurocode 4:Design of Composite Steel and Concrete Structures:Part 1-1:General Rules and Rules for Buildings. London:British Standards Institution, 2004 [21] Wright H D. Local stability of filled and encased steel sections. J Struct Eng, 1995, 121(10):1382 [22] Yang Y L, Wang Y Y, Fu F. Effect of reinforcement stiffeners on square concrete-filled steel tubular columns subjected to axial compressive load. Thin-Walled Struct, 2014, 82:132 -

計量
- 文章訪問數: 716
- HTML全文瀏覽量: 214
- PDF下載量: 21
- 被引次數: 0