<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于光流方向信息熵統計的微表情捕捉

李丹 解侖 盧婷 韓晶 胡波 王志良 任福繼

李丹, 解侖, 盧婷, 韓晶, 胡波, 王志良, 任福繼. 基于光流方向信息熵統計的微表情捕捉[J]. 工程科學學報, 2017, 39(11): 1727-1734. doi: 10.13374/j.issn2095-9389.2017.11.016
引用本文: 李丹, 解侖, 盧婷, 韓晶, 胡波, 王志良, 任福繼. 基于光流方向信息熵統計的微表情捕捉[J]. 工程科學學報, 2017, 39(11): 1727-1734. doi: 10.13374/j.issn2095-9389.2017.11.016
LI Dan, XIE Lun, LU Ting, HAN Jing, HU Bo, WANG Zhi-liang, REN Fu-ji. Capture of microexpressions based on the entropy of oriented optical flow[J]. Chinese Journal of Engineering, 2017, 39(11): 1727-1734. doi: 10.13374/j.issn2095-9389.2017.11.016
Citation: LI Dan, XIE Lun, LU Ting, HAN Jing, HU Bo, WANG Zhi-liang, REN Fu-ji. Capture of microexpressions based on the entropy of oriented optical flow[J]. Chinese Journal of Engineering, 2017, 39(11): 1727-1734. doi: 10.13374/j.issn2095-9389.2017.11.016

基于光流方向信息熵統計的微表情捕捉

doi: 10.13374/j.issn2095-9389.2017.11.016
基金項目: 

國家自然科學基金資助項目(61672093,61432004)

國家重點研發計劃重點專項課題資助項目(2016YFB1001404)

詳細信息
  • 中圖分類號: TP751.1

Capture of microexpressions based on the entropy of oriented optical flow

  • 摘要: 以光流法為依據,提出了一種基于光流方向信息熵(entropy of oriented optical flow,EOF)統計的方法捕捉微表情關鍵幀.首先,采用改進的Horn-Schunck光流法提取視頻流中相鄰兩幀圖像的微表情運動特征;其次,采用閾值分析法篩選出投影速度模值較大的光流向量;之后,采用圖像信息熵統計光流變化角度,進而得到視頻序列的方向信息熵向量,通過對熵向量的分析,實現微表情關鍵幀捕捉;最后,本實驗采用芬蘭奧盧大學的SMIC微表情數據庫和中國科學院心理研究所傅小蘭的CASME微表情數據庫作為實驗樣本,通過與傳統的幀差法比較,證明了本文提出的算法優于幀差法,能夠較好地表現出微表情變化趨勢,為微表情識別提供基礎.

     

  • [2] Ekman P, Friesen W V. Nonverbal leakage and clues to deception. Psychiatry-interpersonal Biol Processes, 1969, 32(1):88
    [3] Porter S, Ten Brinke L. Reading between the lies:Identifying concealed and falsified emotions in universal facial expressions. Psychological Sci, 2008, 19(5):508
    [4] Patel D, Zhao G Y, Pietikäinen M. Spatiotemporal integration of optical flow vectors for microexpression detection//International Conference on Advanced Concepts for Intelligent Vision Systems. Catania, 2015:369
    [5] Polikovsky S, Kameda Y, Ohta Y. Facial micro-expressions recognition using high speed camera and 3D-gradients descriptor//Proceedings of 3rd International Conference on Imaging for Crime Detection and Prevention. London, 2009:16
    [6] Yao S Q, He N, Zhang H Q, et al. Micro-expression recognition by feature points tracking//10th International Conference on Communications. Bucharest, 2014:1
    [8] Wu Q, Shen X B, Fu X L. The machine knows what you are hiding:an automatic micro-expression recognition system//Affective Computing and Intelligent Interaction. Memphis, 2011:152
    [9] Guo Y J, Tian Y T, Gao X, et al. Micro-expression recognition based on local binary patterns from three orthogonal planes and nearest neighbor method//International Joint Conference on Neural Networks. Beijing, 2014:3473
    [10] Zhu S H, Hu J J, Shi Z. Local abnormal behavior detection based on optical flow and spatio-temporal gradient. Multimedia Tools Appl, 2016, 75(15):9445
    [11] Siddiqi M H, Ali R, Khan A M, et al. Facial expression recognition using active contour-based face detection, facial movement-based feature extraction, and non-linear feature selection. Multimedia Syst, 2015, 21(6):541
    [12] Pfister T, Li X B, Zhao G Y, et al. Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework//2011 IEEE International Conference on Computer Vision Workshops. Barcelona, 2011:868
    [13] Liu X, Cheung Y M, Tang Y Y. Lip event detection using oriented histograms of regional optical flow and low rank affinity pursuit. Comput Vision Image Understanding, 2016, 148:153
    [15] Liu K H, Liu T J, Liu H H, et al. Facial makeup detection via selected gradient orientation of entropy information//2015 IEEE International Conference on Image Processing. Quebec City, 2015:4067
    [16] Pfister T, Li X B, Zhao G Y, et al. Recognizing spontaneous facial micro-expressions//2011 IEEE International Conference on International Conference on Computer Vision. Barcelona, 2011:1449
  • 加載中
計量
  • 文章訪問數:  656
  • HTML全文瀏覽量:  192
  • PDF下載量:  20
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-12-15

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com