<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于最小Gibbs自由能原理的鐵氧化物氣固還原熱力學研究

李彬 郭漢杰 郭靖 孫貫永

李彬, 郭漢杰, 郭靖, 孫貫永. 基于最小Gibbs自由能原理的鐵氧化物氣固還原熱力學研究[J]. 工程科學學報, 2017, 39(11): 1653-1660. doi: 10.13374/j.issn2095-9389.2017.11.007
引用本文: 李彬, 郭漢杰, 郭靖, 孫貫永. 基于最小Gibbs自由能原理的鐵氧化物氣固還原熱力學研究[J]. 工程科學學報, 2017, 39(11): 1653-1660. doi: 10.13374/j.issn2095-9389.2017.11.007
LI Bin, GUO Han-jie, GUO Jing, SUN Guan-yong. Thermodynamics of iron oxide gas-solid reduction based on the minimized Gibbs free energy principle[J]. Chinese Journal of Engineering, 2017, 39(11): 1653-1660. doi: 10.13374/j.issn2095-9389.2017.11.007
Citation: LI Bin, GUO Han-jie, GUO Jing, SUN Guan-yong. Thermodynamics of iron oxide gas-solid reduction based on the minimized Gibbs free energy principle[J]. Chinese Journal of Engineering, 2017, 39(11): 1653-1660. doi: 10.13374/j.issn2095-9389.2017.11.007

基于最小Gibbs自由能原理的鐵氧化物氣固還原熱力學研究

doi: 10.13374/j.issn2095-9389.2017.11.007
基金項目: 

國家自然科學基金資助項目(51274031)

詳細信息
  • 中圖分類號: TF533.1

Thermodynamics of iron oxide gas-solid reduction based on the minimized Gibbs free energy principle

  • 摘要: 基于最小Gibbs自由能原理建立了鐵氧化物氣固還原反應的熱力學模型,由模型計算結果作出鐵氧化物氣固還原反應平衡圖,與文獻中實驗數據吻合良好.與常用冶金學教材和熱力學數據庫中給出的參考數據進行了對比,不同來源的熱力學數據差異較大.探究了鐵氧化物逐級還原的熱力學平衡情況.計算了CO和H2混合氣體還原鐵氧化物的熱力學平衡,推導了平衡時氣體總利用率η的計算公式,作出了CO和H2混合氣體還原鐵氧化物的三維平衡圖,并與文獻中實驗數據對比,驗證了結果的正確性.

     

  • [3] Barin I, Knacke O, Kubaschewski O. Thermochemical Properties of Inorganic Substances:Supplement. Berlin:Springer-Verlag, 1977
    [4] Giddings R A, Gordon R S. Review of oxygen activities and phase boundaries in Wustite as determined by electromotive-force and gravimetric methods. J Am Ceram Soc, 1973, 56(3):111
    [5] Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2:part Ⅰ:low temperature reduction of hematite. Thermochim Acta, 2006, 447(1):89
    [6] Weiss B, Sturn J, Winter F, et al. Empirical reduction diagrams for reduction of iron ores with H2 and CO gas mixtures considering non-stoichiometries of oxide phases. Ironmaking Steelmaking, 2009, 36(3):212
    [7] Zhang W, Zhang J H, Li Q, et al. Thermodynamic analyses of iron oxides redox reactions//Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Hoboken, 2013:777
    [8] Wimmers O J, Arnoldy P, Moulijn J A. Determination of the reduction mechanism by temperature-programmed reduction:application to small Fe2O3 particles. J Phys Chem, 1986, 90(7):1331
    [9] Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A Gen, 2007, 326(1):17
    [13] Chase M W. NIST-JANAF Thermochemical Tables. 4th Ed. Washington D. C.:American Chemical Society & American Institute of Physics & National Institute of Standards and Technology, 1998
    [14] Barin I. Thermochemical Data of Pure Substances. 3rd Ed. Weinheim:Wiley-Vch Verlag, 1995
  • 加載中
計量
  • 文章訪問數:  941
  • HTML全文瀏覽量:  286
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-03-06

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com