<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

碳/氧化鋅納米線陣列/泡沫石墨烯電化學檢測葉酸

王寶 林軒宇 黃碩 高鑫 姚龍輝 岳紅彥

王寶, 林軒宇, 黃碩, 高鑫, 姚龍輝, 岳紅彥. 碳/氧化鋅納米線陣列/泡沫石墨烯電化學檢測葉酸[J]. 工程科學學報, 2017, 39(11): 1647-1652. doi: 10.13374/j.issn2095-9389.2017.11.006
引用本文: 王寶, 林軒宇, 黃碩, 高鑫, 姚龍輝, 岳紅彥. 碳/氧化鋅納米線陣列/泡沫石墨烯電化學檢測葉酸[J]. 工程科學學報, 2017, 39(11): 1647-1652. doi: 10.13374/j.issn2095-9389.2017.11.006
WANG Bao, LIN Xuan-yu, HUANG Shuo, GAO Xin, YAO Long-hui, YUE Hong-yan. Electrochemical determination of folic acid using carbon/ZnO nanowire arrays/graphene foam[J]. Chinese Journal of Engineering, 2017, 39(11): 1647-1652. doi: 10.13374/j.issn2095-9389.2017.11.006
Citation: WANG Bao, LIN Xuan-yu, HUANG Shuo, GAO Xin, YAO Long-hui, YUE Hong-yan. Electrochemical determination of folic acid using carbon/ZnO nanowire arrays/graphene foam[J]. Chinese Journal of Engineering, 2017, 39(11): 1647-1652. doi: 10.13374/j.issn2095-9389.2017.11.006

碳/氧化鋅納米線陣列/泡沫石墨烯電化學檢測葉酸

doi: 10.13374/j.issn2095-9389.2017.11.006
基金項目: 

哈爾濱理工大學青年拔尖創新人才培養計劃資助項目(201604)

黑龍江博士后科研啟動基金資助項目(LBH-Q14117)

哈爾濱市應用技術研究與開發資助項目(2016RAQXJ185)

國家留學人員科技活動資助項目(2015192)

黑龍江省自然科學基金資助項目(LC2015020)

詳細信息
  • 中圖分類號: TB332;TP212.3

Electrochemical determination of folic acid using carbon/ZnO nanowire arrays/graphene foam

  • 摘要: 通過化學氣相沉積法制備三維(3D)泡沫石墨烯(GF),然后利用水熱合成法在泡沫石墨烯表面生長氧化鋅納米線陣列(ZnO NWAs),再利用化學氣相沉積法在其表面沉積碳(C),得到碳/氧化鋅納米線陣列/泡沫石墨烯(C/ZnO NWAs/GF)復合材料.用該復合材料做電極,采用電化學方法檢測葉酸(FA).結果表明,三維泡沫石墨烯具有和模板泡沫鎳一樣的三維孔狀結構,ZnO NWAs均勻且垂直地生長在泡沫石墨烯表面,碳沉積在ZnO NWAs表面.在線性范圍為0~60 μmol·L-1內,C/ZnO NWAs/GF電極檢測FA時,靈敏度為0.13 μA·μmol-1·L,且在尿酸(UA)干擾下檢測FA具有良好的選擇性.C/ZnONWAs/GF電極有良好的穩定性和重復性.

     

  • [1] Asaikkutti A, Bhavan P S, Vimala K. Effects of different levels of dietary folic acid on the growth performance, muscle composition, immune response and antioxidant capacity of freshwater prawn, Macrobrachium rosenbergii. Aquaculture, 2016, 464:136
    [2] Cheung R H F, Morrison P D, Small D M, et al. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography. J Chromatogr A, 2008, 1213(1):93
    [3] Phillips K M, Ruggio D M, Haytowitz D B. Folate composition of 10 types of mushrooms determined by liquid chromatography-mass spectrometry. Food Chem, 2011, 129(2):630
    [4] Kirsch S H, Knapp J P, Herrmann W, et al. Quantification of key folate forms in serum using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B, 2010, 878(1):68
    [5] Shishehbore M R, Sheibani A, Haghdost A. Kinetic spectrophotometric method as a new strategy for the determination of vitamin B9 in pharmaceutical and biological samples. Spectrochim Acta A, 2011, 81(1):304
    [6] Akhtar M J, Khan M A, Ahmad I. Identification of photoproducts of folic acid and its degradation pathways in aqueous solution. J Pharm Biomed Anal, 2003, 31(3):579
    [7] Zhang B T, Zhao L X, Lin J M. Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt (Ⅱ) system. Talanta, 2008, 74(5):1154
    [8] Blanco C C, Carretero A S, Gutierrez A F, et al. Fluorometric determination of folic acid based on its reaction with the fluorogenic reagent fluorescamine. Anal Lett, 1994, 27(7):1339
    [9] Arcot J, Shrestha A K, Gusanov U. Enzyme protein binding assay for determining folic acid in fortified cereal foods and stability of folic acid under different extraction conditions. Food Control, 2002, 13(4-5):245
    [10] Chen A C, Shah B. Electrochemical sensing and biosensing based on square wave voltammetry. Anal Methods, 2013, 5:2158
    [11] KHan M, Tahir M N, Adil S F, et al. Graphene based metal and metal oxide nanocomposites:synthesis, properties and their applications. J Mater Chem A, 2015, 3:18753
    [12] Yue H Y, Huang S, Chang J, et al. ZnO nanowire arrays on 3D hierachical graphene foam:biomarker detection of Parkinson's disease. Acs Nano, 2014, 8(2):1639
    [13] Liu X W, Hu Q Y, Wu Q, et al. Aligned ZnO nanorods:a useful film to fabricate amperometric glucose biosensor. Colloid Surface B, 2009, 74(1):154
    [14] Ma S W, Liao Q L, Liu H S, et al. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor. Nanoscale, 2012, 4:6415
    [15] Ma S W, Zhang X H, Liao Q L, et al. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sens Actuators B:Chem, 2015, 212:41
    [16] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater, 2003, 15(5):464
    [17] Ahmad M, Zhu J. ZnO based advanced functional nanostructures:synthesis, properties and applications. J Mater Chem, 2011, 21:599
    [18] Zhan H L, Garrett D J, Apollo N V, et al. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition. Sci Rep, 2016, 6:19822.
    [19] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater, 2011, 10(6):424
    [20] Babaei A, Babazadeh M. A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis, 2011, 23(7):1726
    [21] Taei M, Jamshidi M. Highly selective determination of ascorbic acid, epinephrine,and uric acid by differential pulse voltammetry using poly(Adizol Black B)-modified glassy carbon electrode. J Solid State Electrochem, 2014, 18(3):673
    [22] O'Shea T J, Garcia A C, Blanco P T, et al. Electrochemical pretreatment of carbon fibre microelectrodes for the determination of folic acid. J Electroanal Chem Interf Electrochem, 1991, 307(1-2):63
    [23] Beitollahi H, Hamzavi M, Torkzadeh-Mahani M. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using amodified graphene oxide sheet paste electrode. Mater Sci Eng C, 2015, 52:297
    [24] Mazloum-Ardakani M, Beitollahi H, Amini M K, et al. Simultaneous and selective voltammetric determination of epinephrine, acetaminophen and folic acid at a ZrO2 nanoparticles modified carbon paste electrode. Anal Methods, 2011, 3:673
  • 加載中
計量
  • 文章訪問數:  817
  • HTML全文瀏覽量:  377
  • PDF下載量:  13
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-03-07

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com