<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

次生硫化銅礦微生物浸出實驗

尹升華 王雷鳴 潘晨陽 陳勛 謝芳芳 艾純明

尹升華, 王雷鳴, 潘晨陽, 陳勛, 謝芳芳, 艾純明. 次生硫化銅礦微生物浸出實驗[J]. 工程科學學報, 2017, 39(10): 1498-1506. doi: 10.13374/j.issn2095-9389.2017.10.006
引用本文: 尹升華, 王雷鳴, 潘晨陽, 陳勛, 謝芳芳, 艾純明. 次生硫化銅礦微生物浸出實驗[J]. 工程科學學報, 2017, 39(10): 1498-1506. doi: 10.13374/j.issn2095-9389.2017.10.006
YIN Sheng-hua, WANG Lei-ming, PAN Chen-yang, CHEN Xun, XIE Fang-fang, AI Chun-ming. Secondary copper sulfide bioleaching experiments[J]. Chinese Journal of Engineering, 2017, 39(10): 1498-1506. doi: 10.13374/j.issn2095-9389.2017.10.006
Citation: YIN Sheng-hua, WANG Lei-ming, PAN Chen-yang, CHEN Xun, XIE Fang-fang, AI Chun-ming. Secondary copper sulfide bioleaching experiments[J]. Chinese Journal of Engineering, 2017, 39(10): 1498-1506. doi: 10.13374/j.issn2095-9389.2017.10.006

次生硫化銅礦微生物浸出實驗

doi: 10.13374/j.issn2095-9389.2017.10.006
基金項目: 

全國優秀博士學位論文作者專項資金資助項目(201351)

新世紀優秀人才支持計劃資助項目(NCET-13-0669)

國家自然科學基金資助項目(51374035,51574013,51604138)

詳細信息
  • 中圖分類號: TD853.3

Secondary copper sulfide bioleaching experiments

  • 摘要: 微生物浸礦是提取低品位,難選次生硫化銅礦中有價元素的最有效方法之一.本研究利用嗜酸氧化亞鐵硫桿菌(Acidthiobacillus ferrooxidans)浸取福建某難選次生硫化銅礦,依次開展浸礦菌富集培養實驗、馴化轉代實驗和不同粒徑配比下柱浸試驗,獲得了不同階段的細菌濃度、pH值、銅浸出率等演變規律;并結合電子計算機斷層掃描技術實現了柱內礦堆塌落、截面孔隙演化和浸礦機理研究.研究表明:細菌濃度和pH值均呈現緩慢增加后趨降低的趨勢,浸柱中細菌增殖較慢,浸礦480 h后,細菌濃度僅為每毫升5×107個.浸礦過程中,細顆粒趨于向柱底遷移,礦堆出現塌落;柱頂孔隙率變大,增幅為6.65%,柱底孔隙率變小,降幅為8.29%;塌落程度與細粒含量成正比,最小塌落為1.7 mm,最大塌落為6.15 mm.入堆礦石粒徑極大影響著柱浸體系的浸出效果.實驗中柱浸B組(粒徑r < 1 mm占28.41%)浸礦效果最佳,浸礦480 h后銅浸出率達47.23%.

     

  • [1] Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-a review. Hydrometallurgy, 2006, 84(1-2):81
    [2] Panda S, Biswal A, Mishra S, et al. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite:a new concept of biohydrometallurgy. Hydrometallurgy, 2015, 153:98
    [5] Fagan M A, Ngoma I E, Chiume R A, et al. MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms. Hydrometallurgy, 2014, 150:210
    [8] Yin S H, Wang L M, Chen X, et al. Effect of ore size and heap porosity on capillary process inside leaching heap. T Nonferr Metal Soc China, 2016, 26(3):835
    [11] Quast K, Xu D F, Skinner W, et al. Column leaching of nickel laterite agglomerates:effect of feed size. Hydrometallurgy, 2013, 134-135:144
    [12] Yin S H, Wu A X, Su Y D, et al. Experimental study on preferential solution flow during dump leaching of low-grade ores. J Cent South Univ Technol, 2007, 14(4):584
    [13] Nazari B, Jorjani E, Hani H, et al. Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria. T Nonferr Metal Soc China, 2014, 24(4):1152
    [14] Miller J D, Lin C L, Garcia C, et al. Ultimate recovery in heap leaching operations as established from mineral exposure analysis by X-ray microtomography. Int J Miner Process, 2003, 72(1-4):331
    [15] Lin C L, Miller J D, Garcia C. Saturated flow characteristics in column leaching as described by LB simulation. Miner Eng, 2005, 18(10):1045
    [16] Lin C L, Miller J D. Pore structure analysis of particle beds for fluid transport simulation during filtration. Int J Miner Process, 2004, 73(2-4):281
    [21] Klauber C. Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface. Surf Interface Anal, 2003, 35(5):415
    [23] Liu X Y, Shu R B, Chen B W, et al. Bacterial community structure change during pyrite bioleaching process:effect of pH and aeration. Hydrometallurgy. 2009, 95(3-4):267
    [24] Thomas G, Ingraham T R, MacDonald R J C. Kinetics of dissolution of synthetic digenite and chalcocite in aqueous acidic ferric sulphate solution. Can Metall Quart, 1967, 6(3):281
    [25] Rodrıguez Y, Ballester A, Blazquez M L, et al. New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy, 2003, 71(1-2):47
    [26] Wu A X, Yin S H, Qin W Q, et al. The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching. Hydrometallurgy, 2009, 95(1-2):76
    [27] Faybishenko B A. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air:laboratory experiments. Water Resour Res, 1995, 31(10):2421
    [28] Wu A X, Yin S H, Yang B H, et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3-4):124
    [29] Hamdona S K, Hadad U A A. Crystallization of calcium sulfate dihydrate in the presence of some metal ions. J Cryst Growth, 2007, 299(1):146
    [30] Yen Y K, Lin C L, Miller J D. Particle overlap and segregation problems in on-line coarse particle size measurement. Powder Technol, 1998, 98(1):1
  • 加載中
計量
  • 文章訪問數:  1088
  • HTML全文瀏覽量:  262
  • PDF下載量:  15
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-03-26

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com