<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

全風向來流非高斯風場風機疲勞壽命可靠性分析

雙妙 宋波

雙妙, 宋波. 全風向來流非高斯風場風機疲勞壽命可靠性分析[J]. 工程科學學報, 2017, 39(9): 1453-1462. doi: 10.13374/j.issn2095-9389.2017.09.020
引用本文: 雙妙, 宋波. 全風向來流非高斯風場風機疲勞壽命可靠性分析[J]. 工程科學學報, 2017, 39(9): 1453-1462. doi: 10.13374/j.issn2095-9389.2017.09.020
SHUANG Miao, SONG Bo. Reliability analysis of the fatigue life of wind turbines under a non-Gaussian wind field with a full-direction inflow[J]. Chinese Journal of Engineering, 2017, 39(9): 1453-1462. doi: 10.13374/j.issn2095-9389.2017.09.020
Citation: SHUANG Miao, SONG Bo. Reliability analysis of the fatigue life of wind turbines under a non-Gaussian wind field with a full-direction inflow[J]. Chinese Journal of Engineering, 2017, 39(9): 1453-1462. doi: 10.13374/j.issn2095-9389.2017.09.020

全風向來流非高斯風場風機疲勞壽命可靠性分析

doi: 10.13374/j.issn2095-9389.2017.09.020
基金項目: 

國家自然科學基金資助項目(51178045)

高校2016年度引智項目資助項目(110000201420160126)

北京科技大學與臺北科技大學專題聯合研究計劃資助項目(TW201601)

詳細信息
  • 中圖分類號: TU311.3

Reliability analysis of the fatigue life of wind turbines under a non-Gaussian wind field with a full-direction inflow

  • 摘要: 在Hermite矩模型基礎上,根據Kaimal譜生成某典型風機結構正常風速條件下,三種不同概率特性風場(高斯、非高斯硬化和軟化),在考慮來流風向和平均風速聯合概率密度條件下,以塔架基礎連接處為例,對風機進行疲勞壽命可靠性分析.由葉片的氣動模型和多體動力,計算出風機的動力響應,并對響應的時域和頻域特性進行分析.基于線性損傷累積理論和Paris公式,對來流全風向條件下的裂紋形成壽命和裂紋擴展壽命進行了詳細討論.結果表明,裂紋形成壽命對風荷載的非高斯性較為敏感,而裂紋擴展壽命對風荷載的非高斯性并不敏感,需要考慮風荷載的非高斯性對風機結構疲勞損傷的影響.此外,在考慮全風向來流條件下,疲勞裂紋形成和擴展階段的失效位置相同,均在主導風向上.

     

  • [1] Saravia C M, Machado S P, Cortínez V H. A composite beam finite element for multibody dynamics:application to large wind turbine modeling. Eng Struct, 2013, 56:1164
    [2] Chen X B, Li J, Chen J Y. Wind-induced response analysis of a wind turbine tower including the blade-tower coupling effect. J Zhejiang Univ-SCIENCE A, 2009, 10(11):1573
    [3] Jonkman J M, Buhl Jr M L. FAST User's Guide. Technical Report No. NREL/EL-500-38230, 2005
    [4] Larsen T J, Hansen A M. How 2 HAWC2 the User's Manual. Risø National Laboratory, 2007
    [5] Do T Q, van de Lindt J W, Mahmoud H. Fatigue life fragilities and performance-based design of wind turbine tower base connections. J Struct Eng, 2014, 141(7):04014183-1
    [6] Do T Q, Mahmoud H, van de Lindt J W. Fatigue life of wind turbine tower bases throughout Colorado. J Perform Constr Fac, 2015, 29(4):04014109-1
    [7] Dawood M, Goyal R, Dhonde H, et al. Fatiguelife assessment of cracked high-Mast Illumination Poles. J Perform Constr Fac, 2014, 28(2):311
    [8] Repetto M P, Solari G. Closed-form prediction of the alongwindinduced fatigue of structures. J Struct Eng, 2012, 138(9):1149
    [9] Repetto M P, Solari G. Closed form solution of the alongwind-induced fatigue damage to structures. Eng Struct, 2009, 31(10):2414
    [10] Repetto M P. Cycle counting methods for bi-modal stationary Gaussian processes. Probabilist Eng Mech, 2005, 20(3):229
    [11] Gong K M, Chen X Z. Influence of non-Gaussian wind characteristics on wind turbine extreme response. Eng Struct, 2014, 59:727
    [12] Gong K M, Ding J, Chen X Z. Estimation of long-term extreme response of operational and parked wind turbines:validation and some new insights. Eng Struct, 2014, 81:135
    [13] Ding J, Gong K M, Chen X Z. Comparison of statistical extrapolation methods for the evaluation of long-term extreme response of wind turbine. Eng Struct, 2013, 57:100
    [14] Chou J S, Tu W T. Failure analysis and risk management of a collapsed large wind turbine tower. Eng Fail Anal, 2011, 18(1):295
    [15] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5MW Reference Wind Turbine for Offshore System Development. Technical Report, NREL/TP-500-38060, National Renewable Energy Laboratory,2009
    [16] Akdağ S A, Dinler A. A new method to estimate Weibull parameters for wind energy applications. Energy Convers Manage, 2009, 50(7):1761
    [17] Clifton A. 135 m Meteorological Towers at the National Wind Technology Center. NREL Report TP-500-55915, 2016
    [18] Ding J,Chen X Z. Moment-based translation model for hardening non-Gaussian response processes. J Eng Mech, 2016, 142(2):06015006-1
    [19] Grigoriu M. Spectralrepresentation for a class of non-Gaussian processes. J Eng Mech, 2004, 130(5):541
    [20] Shields M D, Deodatis G. A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic vector process by a translation process with applications in wind velocity simulation. Probabilist Eng Mech, 2013, 31:19
    [21] Shields M D, Deodatis G, Bocchini P. A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process. Probabilist Eng Mech, 2011, 26(4):511
    [22] Bocchini P. Probabilistic Approaches in Civil Engineering:Generation of Random Fields and Structural Identification with Genetic Algorithms[Dissertation]. Bologna:Università di Bologna, 2008
    [23] Bengtsson A, Rychlik I. Uncertainty in fatigue life prediction of structures subject to Gaussian loads. Probabilist Eng Mech, 2009, 24(2):224
    [24] Low Y M. Variance of the fatigue damage due to a Gaussian narrowband process. Struct Saf, 2012, 34(1):381
    [25] Ding J, Chen X Z, Zuo D L, et al. Fatigue life assessment of traffic-signal support structures from an analytical approach and long-term vibration monitoring data. J Struct Eng, 2016, 142(6):04016017-1
    [26] Hanaki S, Yamashita M, Uchida H, et al. On stochastic evaluation of S-N data based on fatigue strength distribution. Int J Fatigue, 2010, 32(3):605
    [27] Stam A, Richman N, Pool C, et al. Fatigue Life of Steel Base Plate to Pole Connections for Traffic Structures. Austin:Center for Transportation Research, University of Texas at Austin, 2011
    [28] Chung H, Manuel L, Frank K H. Optimal Inspection of FractureCritical Steel Trapezoidal Girders. Austin:Center for Transportation Research, University of Texas at Austin, 2003
    [29] Mahmoud H N, Dexter R J. Propagation rate of large cracks in stiffened panels under tension loading. Mar Struct, 2005, 18(3):265
    [30] Dowling N E. Mechanical Behavior of Materials:Engineering Methods for Deformation, Fracture, and Fatigue. 4th Ed. Boston:Pearson, 2012
  • 加載中
計量
  • 文章訪問數:  568
  • HTML全文瀏覽量:  191
  • PDF下載量:  12
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-01-11

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com