<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

混合選別過程半實物仿真系統

武成瑞 賈瑤 王琳巖

武成瑞, 賈瑤, 王琳巖. 混合選別過程半實物仿真系統[J]. 工程科學學報, 2017, 39(9): 1412-1420. doi: 10.13374/j.issn2095-9389.2017.09.015
引用本文: 武成瑞, 賈瑤, 王琳巖. 混合選別過程半實物仿真系統[J]. 工程科學學報, 2017, 39(9): 1412-1420. doi: 10.13374/j.issn2095-9389.2017.09.015
WU Cheng-rui, JIA Yao, WANG Lin-yan. A hardware-in-the-loop simulation system for the mixed separation process[J]. Chinese Journal of Engineering, 2017, 39(9): 1412-1420. doi: 10.13374/j.issn2095-9389.2017.09.015
Citation: WU Cheng-rui, JIA Yao, WANG Lin-yan. A hardware-in-the-loop simulation system for the mixed separation process[J]. Chinese Journal of Engineering, 2017, 39(9): 1412-1420. doi: 10.13374/j.issn2095-9389.2017.09.015

混合選別過程半實物仿真系統

doi: 10.13374/j.issn2095-9389.2017.09.015
基金項目: 

國家高技術研究發展計劃(863)資助項目(2015AA043802)

國家自然科學基金資助項目(61503066)

國家自然科學基金青年基金資助項目(61304091)

詳細信息
  • 中圖分類號: TP271.6

A hardware-in-the-loop simulation system for the mixed separation process

  • 摘要: 為了滿足復雜工業過程控制技術的研究需求,需要建立具有代表性的半實物仿真系統.針對混合選別過程,研發由對象計算機、控制器設計計算機、監控計算機、虛擬執行機構與檢測儀表裝置和控制系統組成的半實物仿真系統.該系統基于工業控制系統軟件開發控制算法,運用MATLAB研發虛擬對象、虛擬執行機構和檢測儀表、控制器設計模型,研發了相應的可視化界面.在對象計算機、控制器設計計算機和監控計算機的基礎上完成了被控對象機理建模、控制器設計模型參數辨識、控制器設計和控制器性能評價等研究.為復雜控制算法研究進一步工業應用奠定了基礎.

     

  • [3] Liu Y, Spencer S. Dynamic simulation of grinding circuits. Miner Eng, 2004, 17(11-12):1189
    [5] Li H B, Chai T Y, Zhang L Y. Hybrid intelligent optimal control for flotation processes//2012 American Control Conference. Montréal, 2012:4891
    [6] Geng Z X, Chai T Y, Yue H. A method of hybrid intelligent optimal setting control for flotation process//7th World Congress on Intelligent Control&Automation. Chongqing, 2008:4713
    [7] Dai W, Zhou P, Zhao D Y, et al. Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process. Powder Technol, 2016, 288:422
    [9] Radhakrishnan V R. Model based supervisory control of a ball mill grinding circuit. J Process Control, 1999, 9(3):195
    [10] Bartlett J T. Process simulation and optimization using metsim//Mineral Resources Management by Personal Computer. Littleton, 1987:105
    [12] Liu F Z, Gao H J, Qiu J B, et al. Networked multirate output feedback control for setpoints compensation and its application to rougher flotation process. IEEE T Ind Electron, 2014, 61(1):460
    [13] Chen Z M, Hu Y J, Wang X, et al. Design of hardware-in-theloop simulation system for LTE-A system based on USRP//2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). Hefei, 2016:2081
    [14] Rajamani R K, Herbst J A. Optimal control of a ball mill grinding circuit——I. Grinding circuit modeling and dynamic simulation. Chem Eng Sci, 1991, 46(3):861
    [15] Durance M V, Guillaneau J C, Villeneuve J, et al. Computer simulation of mineral and hydrometallurgical processes, USIM PAC2, a single software from design to optimization//Proceedings of International Symposium on Modelling Simulation Control of Hydrometallurgical Processes. Quebec, 1993:109
    [16] Cecati C, Kolbusz J, Różycki P, et al. A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE T Ind Electron, 2015, 62(10):6519
    [17] Yu H, Xie T T, Paszczynski S, et al. Advantages of radial basis function networks for dynamic system design. IEEE T Ind Electron, 2011, 58(12):5438
    [18] Kolodner J L. An introduction to case-based reasoning. Artif Intell Rev, 1992, 6(1):3
    [19] Riesbeck C K, Schank R C. Inside Case-based Reasoning. New Jersey:Lawrence Erlbaum Associates, 2013
    [20] Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Trans Autom Sci Eng, 2009, 6(4):730
    [21] Sidrak Y L. Control of the thickener operation in alumina production. Control Eng Pract, 1997, 5(10):1417
    [22] Chai T Y, Jia Y, Li H B, et al. An intelligent switching control for a mixed separation thickener process. Control Eng Pract, 2016, 57:61
    [23] Li H B, Chai T Y, Fu J, et al. Adaptive decoupling control of pulp levels in flotation cells. Asian J Control, 2013, 15(5):1434
  • 加載中
計量
  • 文章訪問數:  765
  • HTML全文瀏覽量:  310
  • PDF下載量:  10
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-11-05

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com