<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鑄坯取樣位置對經濟型雙相不銹鋼2101熱塑性的影響

馮志慧 李建興 李靜媛 王一德

馮志慧, 李建興, 李靜媛, 王一德. 鑄坯取樣位置對經濟型雙相不銹鋼2101熱塑性的影響[J]. 工程科學學報, 2017, 39(9): 1364-1371. doi: 10.13374/j.issn2095-9389.2017.09.009
引用本文: 馮志慧, 李建興, 李靜媛, 王一德. 鑄坯取樣位置對經濟型雙相不銹鋼2101熱塑性的影響[J]. 工程科學學報, 2017, 39(9): 1364-1371. doi: 10.13374/j.issn2095-9389.2017.09.009
FENG Zhi-hui, LI Jian-xing, LI Jing-yuan, WANG Yi-de. Influence of the sample position of the cast on the thermoplasticity of lean duplex stainless steel 2101[J]. Chinese Journal of Engineering, 2017, 39(9): 1364-1371. doi: 10.13374/j.issn2095-9389.2017.09.009
Citation: FENG Zhi-hui, LI Jian-xing, LI Jing-yuan, WANG Yi-de. Influence of the sample position of the cast on the thermoplasticity of lean duplex stainless steel 2101[J]. Chinese Journal of Engineering, 2017, 39(9): 1364-1371. doi: 10.13374/j.issn2095-9389.2017.09.009

鑄坯取樣位置對經濟型雙相不銹鋼2101熱塑性的影響

doi: 10.13374/j.issn2095-9389.2017.09.009
基金項目: 

國家自然科學基金資助項目(U1660114)

國家重點研發計劃資助項目(2016YFB0300200)

詳細信息
  • 中圖分類號: TG335.11

Influence of the sample position of the cast on the thermoplasticity of lean duplex stainless steel 2101

  • 摘要: 為了解大型鑄錠在軋制過程中產生邊裂的原因,通過對比鑄坯中部和邊部的成分、不同溫度下相比例、兩相硬度差等的變化規律,利用光學顯微鏡,掃描電子顯微鏡和電子背散射衍射觀察分析試驗鋼的微觀組織和斷口形貌,分析了邊部容易開裂的原因.結果表明,和中部相比,邊部晶粒細小,且鐵素體含量較多,但邊部開裂更嚴重.這說明晶粒尺寸和相比例并不是影響使邊部開裂嚴重的主要原因.而和中部比,鑄錠邊部試樣兩相硬度差較大,使兩相在熱變形過程中應變分配不均勻,容易在相界處產生應力集中,導致開裂.同時邊部析出物較中部多,相界析出物的產生破壞了基體的連續性,容易在相界處產生顯微裂紋,導致開裂.

     

  • [2] Iza-Mendia A, Pinol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions. Metall Mat Trans A, 1998, 29(12):2975
    [4] Zhang L H, Jiang Y M, Deng B, et al. Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel. Mater Charact, 2009, 60(12):1522
    [5] Zhang L H. Study on the Corrosion Behavior of Economical Duplex Stainless Steel 2101[Dissertation]. Shanghai:Fudan University, 2010

    (張麗華.經濟型雙相不銹鋼2101的腐蝕行為研究[學位論文].上海:復旦大學, 2010)
    [7] Fang Y L, Liu Z Y, Wang G D. Crack properties of lean duplex stainless steel 2101 in hot forming processes. J Iron Steel Res Int, 2011, 18(4):58
    [8] Evangelista E, McQueen H J, Niewczas M, et al. Hot workability of 2304 and 2205 duplex stainless steels. Can Metall Q, 2004, 43(3):339
    [10] Liu Y Y, Yan H T, Wang X H, et al. Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101. Mater Sci Eng A, 2013, 575:41
    [11] Wu K. Study on Hot Deformation Behavior and Mechanism of Economical Duplex Stainless Steel 2101[Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2013

    (吳琨.經濟型雙相不銹鋼2101高溫變形行為及機理研究[學位論文].西安:西安建筑科技大學, 2013)
    [12] Sieurin H, Sandstrom R, Westin E M. Fracture toughness of the lean duplex stainless steel LDX 2101. Metall Mater Trans A, 2006, 37(10):2975
    [13] Zou D N, Wu K, Han Y, et al. Deformation characteristic and prediction of flow stress for as-cast 21Cr economical duplex stainless steel under hot compression. Mater Des, 2013, 51:975
    [14] Park J Y, Ahn Y S. Effect of Ni and Mn on the mechanical properties of 22Cr micro-duplex stainless steel. Acta Metall Sin (Engl Lett), 2015, 28(1):32
    [15] Fang Y L, Liu Z Y, Xue W Y, et al. Precipitation of secondary phases in lean duplex stainless steel 2101 during isothermal ageing. ISIJ Int, 2010, 50(2):286
    [16] Crowther D N, Mintz B. Influence of grain size and precipitation on hot ductility of microalloyed steels. Mater Sci Technol, 1986, 2(11):1099
    [17] El Wahabi M, Gavard L, Montheillet F, et al. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels. Acta Mater, 2005, 53(17):4605
    [19] Ågren J. Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels. Acta Metall, 1982, 30(4):841
    [20] Atamert S, King J E. Elemental partitioning and microstructural development in duplex stainless steel weld metal. Acta Metallurgica et Materialia, 1991, 39(3):273
    [21] Park Y H, Lee Z H. The effect of nitrogen and heat treatment on the microstructure and tensile properties of 25Cr-7Ni-1.5Mo-3W-xN duplex stainless steel castings. Mater Sci Eng A, 2001, 297(1-2):78
    [23] Hänninen H, Romu J, Ilola R, et al. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties. J Mater Process Technol, 2001, 117(3):424
    [24] Cortie M B, Potgieter J H. The effect of temperature and nitrogen content on the partitioning of alloy elements in duplex stainless steels. Metall Trans A, 1991, 22(10):2173
    [25] Dastur Y N, Leslie W C. Mechanism of work hardening in Hadfield manganese steel. Metall Trans A, 1981, 12(5):749
  • 加載中
計量
  • 文章訪問數:  1086
  • HTML全文瀏覽量:  225
  • PDF下載量:  15
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-04-12

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com