<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

特厚鋼板陣列射流淬火的表面換熱

付天亮 鄧想濤 韓鈞 劉光浩 王昭東

付天亮, 鄧想濤, 韓鈞, 劉光浩, 王昭東. 特厚鋼板陣列射流淬火的表面換熱[J]. 工程科學學報, 2017, 39(9): 1339-1346. doi: 10.13374/j.issn2095-9389.2017.09.006
引用本文: 付天亮, 鄧想濤, 韓鈞, 劉光浩, 王昭東. 特厚鋼板陣列射流淬火的表面換熱[J]. 工程科學學報, 2017, 39(9): 1339-1346. doi: 10.13374/j.issn2095-9389.2017.09.006
FU Tian-liang, DENG Xiang-tao, HAN Jun, LIU Guang-hao, WANG Zhao-dong. Surface heat transfer of jet array impingement quenching for ultra-heavy plate[J]. Chinese Journal of Engineering, 2017, 39(9): 1339-1346. doi: 10.13374/j.issn2095-9389.2017.09.006
Citation: FU Tian-liang, DENG Xiang-tao, HAN Jun, LIU Guang-hao, WANG Zhao-dong. Surface heat transfer of jet array impingement quenching for ultra-heavy plate[J]. Chinese Journal of Engineering, 2017, 39(9): 1339-1346. doi: 10.13374/j.issn2095-9389.2017.09.006

特厚鋼板陣列射流淬火的表面換熱

doi: 10.13374/j.issn2095-9389.2017.09.006
基金項目: 

東北大學基本科研業務費重大科技創新資助項目(N160708001)

詳細信息
  • 中圖分類號: TG156.34

Surface heat transfer of jet array impingement quenching for ultra-heavy plate

  • 摘要: 采用特厚鋼板專用輥式射流淬火試驗裝置和多通道鋼板溫度記錄儀,測試出射流速度3.39~26.8 m·s-1、雷諾數12808~117340、水流密度978.7~6751.5 L·(m2·min)-1條件下,84 mm厚鋼板淬火冷卻曲線;進而基于反傳熱修正方法計算高溫鋼板淬火過程壁面溫度和熱流密度,描繪出沸騰曲線,分析多束圓孔陣列射流對特厚鋼板淬火表面換熱的影響.結果表明:射流速度、水流密度等參數影響鋼板表面射流滯止區和平行流區換熱機制,進而影響最大熱流密度分布.射流速度較低時,壁面平行流區觀察到混合換熱和"熱流密度肩"現象;隨射流速度增大,膜沸騰換熱機制消失,最大熱流密度移至較低壁面過熱度處.相關研究將對特厚鋼板淬火過程溫度場計算和組織性能調控提供有益的幫助.

     

  • [1] Wang H M, Yu W, Cai Q W. Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling. J Mater Process Technol, 2012, 212(9):1825
    [2] Malinowski Z, Telejko T, Hadała B, et al. Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water. Int J Heat Mass Trans, 2014, 75:347
    [3] Li X T, Wang M T, Du F S. A coupled thermal mechanical and microstructural FE model for hot strip continuous rolling process and verification. Mater Sci Eng A, 2005, 408(1-2):33
    [4] Karwa N, Gambaryan-Roisman T, Stephan P, et al. Experimental investigation of circular free-surface jet impingement quenching:transient hydrodynamics and heat transfer. Exp Therm Fluid Sci, 2011, 35(7):1435
    [5] Karwa N, Stephan P. Experimental investigation of free-surface jet impingement quenching process. Int J Heat Mass Trans, 2013, 64:1118
    [6] Wang L, Sundén B, Borg A, et al. Heat transfer characteristics of an impinging jet in crossflow. J Heat Trans, 2011, 133(12):122202-1
    [7] Lindeman B A, Anderson J M, Shedd T A. Predictive model for heat transfer performance of oblique and normally impinging jet arrays. Int J Heat Mass Trans, 2013, 62:612
    [8] Gradeck M, Kouachi A, Lebouché M, et al. Boiling curves in relation to quenching of a high temperature moving surface with liquid jet impingement. Int J Heat Mass Trans, 2009, 52(5-6):1094
    [9] Robidou H, Auracher H, Gardin P, et al. Controlled cooling of a hot plate with a water jet. Exp Therm Fluid Sci, 2002, 26(2-4):123
    [10] Liu Z H, Wang J. Study on film boiling heat transfer for water jet impinging on high temperature flat plate. Int J Heat Mass Trans, 2001, 44(13):2475
    [12] Fu T L, Wang Z D, Li Y, et al. The influential factor studies on the cooling rate of roller quenching for ultra heavy plate. Appl Therm Eng, 2014, 70(1):800
    [13] Leocadio H, Passos J C, da Silva A F C. Heat transfer behavior of a high temperature steel plate cooled by a subcooled impinging circular water jet//7th ECI International Conference on Boiling Heat Transfer. Santa Catarina, 2009:429
    [14] Woodfield P L, Mozumder A K, Monde M. On the size of the boiling region in jet impingement quenching. Int J Heat Mass Trans, 2009, 52(1-2):460
    [15] Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement. Int J Heat Mass Trans, 2006, 49(17-18):2877
    [17] Li D F. Boiling Water Heat Transfer during Quenching of Steel Plates and Tubes[Dissertation]. Vancouver:University of British Columbia, 2003
    [18] Hernandez-Avila V H. Modeling of the Thermal Evolution of Steel Strips Cooled in the Hot Rolling Runout Table[Dissertation]. Vancouver:University of British Columbia, 2000
    [19] Hall D E, Incropera F P, Viskanta R. Jet impingement boiling from a circular free-surface jet during quenching:Part 1-single phase jet. J Heat Trans, 2001, 123:901
  • 加載中
計量
  • 文章訪問數:  779
  • HTML全文瀏覽量:  231
  • PDF下載量:  10
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-10-10

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com