<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

混合型應力強度因子的光彈性多參數測定

趙熙 鞠楊 鄭澤民

趙熙, 鞠楊, 鄭澤民. 混合型應力強度因子的光彈性多參數測定[J]. 工程科學學報, 2017, 39(8): 1288-1294. doi: 10.13374/j.issn2095-9389.2017.08.020
引用本文: 趙熙, 鞠楊, 鄭澤民. 混合型應力強度因子的光彈性多參數測定[J]. 工程科學學報, 2017, 39(8): 1288-1294. doi: 10.13374/j.issn2095-9389.2017.08.020
ZHAO Xi, JU Yang, ZHENG Ze-min. Multiple parameter measurement of mixed-mode stress intensity factors using the photoelastic method[J]. Chinese Journal of Engineering, 2017, 39(8): 1288-1294. doi: 10.13374/j.issn2095-9389.2017.08.020
Citation: ZHAO Xi, JU Yang, ZHENG Ze-min. Multiple parameter measurement of mixed-mode stress intensity factors using the photoelastic method[J]. Chinese Journal of Engineering, 2017, 39(8): 1288-1294. doi: 10.13374/j.issn2095-9389.2017.08.020

混合型應力強度因子的光彈性多參數測定

doi: 10.13374/j.issn2095-9389.2017.08.020
基金項目: 

江蘇省創新團隊資助項目(2014-27)

國家杰出青年科學基金資助項目(51125017)

國家自然科學基金資助項目(51374213)

詳細信息
  • 中圖分類號: O348.1

Multiple parameter measurement of mixed-mode stress intensity factors using the photoelastic method

  • 摘要: 提高裂紋尖端應力強度因子值的計算精度,對于準確分析受力結構的起裂條件和破壞模式具有重要意義.本文采用3D打印技術獲得了不含殘余應力的平板模型,高精度打印預置裂紋避免了傳統加工過程產生殘余應力的缺點;綜合考慮奇異場和非奇異場對裂紋尖端區域應力場的影響,引入遠場邊界控制的三個常數項應力,提出了光彈性多參數法;采用三點彎曲試驗,運用最小二乘法計算了不同載荷下純I型和I-Ⅱ混合型應力強度因子值,并與理論解對比分析.結果表明:對于純I型應力強度因子,計算結果的平均誤差為6.1%,對于I-Ⅱ混合型應力強度因子,計算結果的平均誤差分別為6.4%和5.5%,多參數法與理論解相比較小的計算誤差驗證了該方法的可靠性和準確性,可為精確計算應力強度因子的光彈性實驗研究提供借鑒.

     

  • [3] Malezhik M P, Chernyshenko I S, Sheremet G P. Photoelastic simulation of the stress wave field around a tunnel in an anisotropic rock mass subject to shock load. Int Appl Mech, 2006, 42(8): 948
    [4] Sakaguchi M, Sasaki Y, Okazaki M, et al. Evaluation of fatigue crack propagation in the post-service gas turbine vane. J Solid Mech Mater Eng, 2010, 4(2): 131
    [5] Livne A, Bouchbinder E, Svetlizky I, et al. The near-tip fields of fast cracks. Science, 2010, 327(5971): 1359
    [6] Murakami Y. Analysis of stress intensity factors of modes I, II and III for inclined surface cracks of arbitrary shape. Eng Fract Mech, 1985, 22(1): 101
    [7] Yan X. Numerical analysis of the stress intensity factor for two kinds of mixed-mode crack specimens. J Strain Anal Eng Des, 2006, 41(1): 9
    [8] Smith C W, Post D, Hiatt G, et al. Displacement measurements around cracks in three-dimensional problems by a hybrid experimental technique. Exp Mech, 1983, 23(1): 15
    [9] Irwin G R. Elasticity and Plasticity/Elastizitt und Plastizitt. Heidelberg: Springer Berlin, 1958: 551
    [10] Bradley W B, Kobayashi A S. An investigation of propagating cracks by dynamic photoelasticity. Exp Mech, 1970, 10(3): 106
    [11] Schroedl M A, Smith C W. A study of near and far field effects in photoelastic stress intensity determination. Eng Fract Mech, 1975, 7(2): 341
    [12] Schroedl M A, McGowan J J, Smith C W. Determination of stress-intensity factors from photoelastic data with applications to surface-flaw problems. Exp Mech, 1974, 14(10): 392
    [13] Theocaris P S, Gdoutos E E. A photoelastic determination of KI stress intensity factors. Eng Fract Mech, 1975, 7(2): 331
    [14] Sanford R J, Dally J W. A general method for determining mixed-mode stress intensity factors from isochromatic fringe patterns. Eng Fract Mech, 1979, 11(4): 621
    [15] Okada H, Atluri S N, Omori Y, et al. Direct evaluation of Tε* integral from experimentally measured near tip displacement field, for a plate with stably propagating crack. Int J Plast, 1999, 15(9):869
    [18] Ju Y, Xie H P, Zheng Z M, et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chin Sci Bull, 2014, 59(36): 5354
    [19] Behrens B A, Bouguecha A, Vucetic M, et al. Characterisation of the quasi-static flow and fracture behaviour of dual-phase steel sheets in a wide range of plane stress states. Arch Civil Mech Eng, 2012, 12(4): 397
    [20] Humbert C, Decruppe J P. Flow birefringence and stress optical law of viscoelastic solutions of cationic surfactants and sodium salicylate. Eur Phys J B-Condens Matter Complex Syst, 1998, 6(4): 511
    [22] Murakami Y, Keer L M. Stress intensity factors handbook, Vol. 3. J Appl Mech, 1993, 60(4): 1063
  • 加載中
計量
  • 文章訪問數:  686
  • HTML全文瀏覽量:  215
  • PDF下載量:  10
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-08-10

目錄

    /

    返回文章
    返回
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com